Suppr超能文献

研制出低温阴离子型2H-MoS/Au传感层包覆光纤气体传感器。

Developed Low-Temperature Anionic 2H-MoS/Au Sensing Layer Coated Optical Fiber Gas Sensor.

作者信息

Ashkavand Z, Sadeghi E, Parvizi R, Zare M

机构信息

Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353, Iran.

出版信息

ACS Appl Mater Interfaces. 2020 Jul 29;12(30):34283-34296. doi: 10.1021/acsami.0c05108. Epub 2020 Jul 15.

Abstract

Carboxyl-functionalized molybdenum disulfide (COOH-MoS) nanosheets were prepared through a facile low-temperature hydrothermal method. The phase transformation of metallic-1T to 2H-semiconductor COOH-MoS nanosheets was conducted through introducing Au thin film on the unclad optical fiber as a sensing layer in a low temperature. The developed structure successfully refined the loss of the semiconducting properties and poor adhesion of COOH-MoS on the unclad polymer optical fiber, which provided limited semiconductor potential as the sensing layers on the optical fiber surfaces. The sensing performance of the as-prepared structure was tested for quantitative detection of three different volatile organic carbons (VOCs) of ethanol, propanol, and methanol gases as well as cross-sensitivity to relative humidity. The operating principle was based on intensity variation of the evanescent wave in the sensing region. The response of the proposed sensing system shows maximum response and better linearity ( = 0.999) to methanol at room temperature. Finally, the comparative experimental cross-sensitivity to relative humidity and methanol was also studied to evaluate the potential of sensing range.

摘要

通过简便的低温水热法制备了羧基功能化二硫化钼(COOH-MoS)纳米片。通过在低温下在裸光纤上引入金薄膜作为传感层,实现了金属-1T相到2H半导体COOH-MoS纳米片的相变。所开发的结构成功改善了半导体性能的损失以及COOH-MoS在裸聚合物光纤上的附着力差的问题,而裸聚合物光纤作为光纤表面的传感层时提供的半导体潜力有限。对所制备结构的传感性能进行了测试,以定量检测乙醇、丙醇和甲醇气体这三种不同的挥发性有机碳(VOC),以及对相对湿度的交叉敏感性。其工作原理基于传感区域中倏逝波的强度变化。所提出的传感系统在室温下对甲醇表现出最大响应和更好的线性度(=0.999)。最后,还研究了对相对湿度和甲醇的对比实验交叉敏感性,以评估传感范围的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验