Pawar Dnyandeo, Kale Sangeeta N
Advanced Materials and Sensors Division (V4), CSIR-Central Scientific Instruments Organisation, Chandigarh, 160030, India.
Department of Applied Physics, Defence Institute of Advanced Technology, Girinagar, Pune, 411025, India.
Mikrochim Acta. 2019 Mar 22;186(4):253. doi: 10.1007/s00604-019-3351-7.
The mesmerizing properties of nanomaterials and the features offered by optical fibers can be combined to result in an attractive new platform for chemical sensing. This review (with 230 refs.) summarizes the progress made in the past five years in the field of fiber-optic sensors: The first group comprises metals and metal oxides and their composites, and the second group comprises graphene, graphene oxides and CNTs, and its composites. By combining these nanocomposites with various optical fiber geometries, numerous sensors have been realized. Following an introduction, first section summarizes fiber-optic configuration for chemical sensing (including Fabry-Perot and Mach-Zehnder interferometry, surface plasmon resonance, and optical fiber gratings of the FBG and LPG type). The second section covers typical nanomaterials used in such sensors, with a first subsection on metals, metal oxides, their composites and nanostructured modifications, and a second subsection on graphenes, graphene oxides, carbon nanotubes, and their derivatives. Section 3 summarizes sensors (i) for various gaseous species (NH, H, CH, HS, CO, NO, O), (ii) for volatile organic compounds (such as ethanol, methanol, acetone, toluene, and formaldehyde), and (iii) for heavy metal ions (such as Hg, Pb, Mg, Cd, Ni, and Mn). The merits and limitations of these nanomaterials and numerous examples for nanomaterial-based sensors are discussed and presented in the form of tables. A concluding section addresses technological challenges and future trends. Graphical Abstract Schematic presentation of an optical fiber modified with various nanomaterials such as metal oxides (MOXs), metals, carbon-nanotubes (CNTs) and graphene. Such sensors are based on several fiber-optic configurations like Fabry-Perot interferometers (FPI), Mach-Zehnder interferometer (MZI) (includes an in-line MZI), surface plasmon resonance (SPR) (includes coating on cladding and unclad part of an optical fiber) and fiber gratings (FGs) (includes fiber Bragg gratings (FBGs) and long-period gratings (LPGs), these are explored for detection of various gases (NH, H, HS, CH, O, CO), vapors (VOCs), and ions.
纳米材料的迷人特性与光纤所具备的特点相结合,能够打造出一个极具吸引力的新型化学传感平台。本综述(附有230篇参考文献)总结了过去五年光纤传感器领域取得的进展:第一类包括金属、金属氧化物及其复合材料,第二类包括石墨烯、氧化石墨烯和碳纳米管及其复合材料。通过将这些纳米复合材料与各种光纤几何结构相结合,已实现了众多传感器。在引言之后,第一节总结了用于化学传感的光纤配置(包括法布里 - 珀罗干涉仪和马赫 - 曾德尔干涉仪、表面等离子体共振以及光纤布拉格光栅和长周期光栅类型的光纤光栅)。第二节涵盖了此类传感器中使用的典型纳米材料,第一个子部分介绍金属、金属氧化物、它们的复合材料以及纳米结构改性,第二个子部分介绍石墨烯、氧化石墨烯、碳纳米管及其衍生物。第三节总结了用于(i)各种气态物质(NH、H、CH、HS、CO、NO、O)、(ii)挥发性有机化合物(如乙醇、甲醇、丙酮、甲苯和甲醛)以及(iii)重金属离子(如Hg、Pb、Mg、Cd、Ni和Mn)的传感器。以表格形式讨论并呈现了这些纳米材料的优缺点以及众多基于纳米材料的传感器实例。结论部分探讨了技术挑战和未来趋势。图形摘要:用各种纳米材料(如金属氧化物(MOXs)、金属、碳纳米管(CNTs)和石墨烯)改性的光纤示意图。此类传感器基于多种光纤配置,如法布里 - 珀罗干涉仪(FPI)、马赫 - 曾德尔干涉仪(MZI)(包括在线MZI)、表面等离子体共振(SPR)(包括在光纤包层和裸光纤部分的涂层)以及光纤光栅(FGs)(包括光纤布拉格光栅(FBGs)和长周期光栅(LPGs)),用于检测各种气体(NH、H、HS、CH、O、CO)、蒸汽(VOCs)和离子。