Suppr超能文献

用于生物人工组织生成的3D明胶支架的激光制造

Laser Fabrication of 3D Gelatin Scaffolds for the Generation of Bioartificial Tissues.

作者信息

Ovsianikov Aleksandr, Deiwick Andrea, Van Vlierberghe Sandra, Pflaum Michael, Wilhelmi Mathias, Dubruel Peter, Chichkov Boris

机构信息

Department of Nanotechnology, Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany.

Polymer Chemistry & Biomaterials Research Group, University of Ghent, Krijgslaan 281, Building S4-Bis, 9000 Ghent, Belgium.

出版信息

Materials (Basel). 2011 Jan 19;4(1):288-299. doi: 10.3390/ma4010288.

Abstract

In the present work, the two-photon polymerization (2PP) technique was applied to develop precisely defined biodegradable 3D tissue engineering scaffolds. The scaffolds were fabricated via photopolymerization of gelatin modified with methacrylamide moieties. The results indicate that the gelatin derivative (GelMod) preserves its enzymatic degradation capability after photopolymerization. In addition, the developed scaffolds using 2PP support primary adipose-derived stem cell (ASC) adhesion, proliferation and differentiation into the anticipated lineage.

摘要

在本研究中,采用双光子聚合(2PP)技术制备了具有精确结构的可生物降解三维组织工程支架。通过甲基丙烯酰胺修饰的明胶光聚合制备了支架。结果表明,明胶衍生物(GelMod)在光聚合后仍保留其酶降解能力。此外,使用2PP技术制备的支架支持原代脂肪来源干细胞(ASC)的黏附、增殖并分化为预期的细胞谱系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d86/5448471/371fb7d91e28/materials-04-00288-g001.jpg

相似文献

1
Laser Fabrication of 3D Gelatin Scaffolds for the Generation of Bioartificial Tissues.
Materials (Basel). 2011 Jan 19;4(1):288-299. doi: 10.3390/ma4010288.
2
Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering.
Biomacromolecules. 2011 Apr 11;12(4):851-8. doi: 10.1021/bm1015305. Epub 2011 Mar 2.
3
Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering.
Acta Biomater. 2019 Aug;94:340-350. doi: 10.1016/j.actbio.2019.05.062. Epub 2019 May 25.
5
Novel biodegradable star-shaped polylactide scaffolds for bone regeneration fabricated by two-photon polymerization.
Nanomedicine (Lond). 2016 May;11(9):1041-53. doi: 10.2217/nnm-2015-0022. Epub 2016 Apr 14.
6
Extrusion-based 3D printing of photo-crosslinkable gelatin and κ-carrageenan hydrogel blends for adipose tissue regeneration.
Int J Biol Macromol. 2019 Nov 1;140:929-938. doi: 10.1016/j.ijbiomac.2019.08.124. Epub 2019 Aug 15.
7
The enhancement of differentiating adipose derived mesenchymal stem cells toward hepatocyte like cells using gelatin cryogel scaffold.
Biochem Biophys Res Commun. 2017 Sep 30;491(4):1000-1006. doi: 10.1016/j.bbrc.2017.07.167. Epub 2017 Aug 1.
8
Laser photofabrication of cell-containing hydrogel constructs.
Langmuir. 2014 Apr 8;30(13):3787-94. doi: 10.1021/la402346z. Epub 2013 Oct 1.
10
Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering.
Acta Biomater. 2019 Mar 15;87:61-75. doi: 10.1016/j.actbio.2019.01.018. Epub 2019 Jan 14.

引用本文的文献

1
Toward Standardized Microscale Tensile Testing for Two-Photon Polymerization-Fabricated Materials in Liquid.
Small Sci. 2025 Jul 22;5(9):2500228. doi: 10.1002/smsc.202500228. eCollection 2025 Sep.
2
Fabrication of 3D matrix microenvironment by two-photon lithography for mechanobiology study.
Mechanobiol Med. 2023 Jul 7;1(1):100010. doi: 10.1016/j.mbm.2023.100010. eCollection 2023 Sep.
4
Minimal-Invasive 3D Laser Printing of Microimplants in Organismo.
Adv Sci (Weinh). 2024 Aug;11(30):e2401110. doi: 10.1002/advs.202401110. Epub 2024 Jun 12.
5
3D micro/nano hydrogel structures fabricated by two-photon polymerization for biomedical applications.
Front Bioeng Biotechnol. 2024 Feb 16;12:1339450. doi: 10.3389/fbioe.2024.1339450. eCollection 2024.
6
A review of bioengineering techniques applied to breast tissue: Mechanical properties, tissue engineering and finite element analysis.
Front Bioeng Biotechnol. 2023 Apr 3;11:1161815. doi: 10.3389/fbioe.2023.1161815. eCollection 2023.
7
Two-Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies.
Adv Sci (Weinh). 2023 Mar;10(7):e2204072. doi: 10.1002/advs.202204072. Epub 2022 Dec 30.
8
Decellularized fennel and dill leaves as possible 3D channel network in GelMA for the development of an adipose tissue model.
Front Bioeng Biotechnol. 2022 Oct 31;10:984805. doi: 10.3389/fbioe.2022.984805. eCollection 2022.
9
10
Two-photon polymerization for 3D biomedical scaffolds: Overview and updates.
Front Bioeng Biotechnol. 2022 Aug 22;10:994355. doi: 10.3389/fbioe.2022.994355. eCollection 2022.

本文引用的文献

2
Multiphoton lithography using a high-repetition rate microchip laser.
Anal Chem. 2010 Oct 15;82(20):8733-7. doi: 10.1021/ac101274u.
3
Nanostructured Biomaterials for Regeneration.
Adv Funct Mater. 2008 Nov 24;18(22):3566-3582. doi: 10.1002/adfm.200800662.
4
Three-dimensional biodegradable structures fabricated by two-photon polymerization.
Langmuir. 2009 Mar 3;25(5):3219-23. doi: 10.1021/la803803m.
7
Accordion-like honeycombs for tissue engineering of cardiac anisotropy.
Nat Mater. 2008 Dec;7(12):1003-10. doi: 10.1038/nmat2316. Epub 2008 Nov 2.
8
Three-dimensional cell culture matrices: state of the art.
Tissue Eng Part B Rev. 2008 Mar;14(1):61-86. doi: 10.1089/teb.2007.0150.
10
Microfabrication of three-dimensional engineered scaffolds.
Tissue Eng. 2007 Aug;13(8):1837-44. doi: 10.1089/ten.2006.0156.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验