Suppr超能文献

动态环境下生化系统的化学朗之万方程。

The chemical Langevin equation for biochemical systems in dynamic environments.

机构信息

School of BioSciences, University of Melbourne, Parkville VIC 3010, Australia.

School of Mathematics and Statistics, University of Melbourne, Parkville VIC 3010, Australia.

出版信息

J Chem Phys. 2022 Sep 7;157(9):094105. doi: 10.1063/5.0095840.

Abstract

Modeling and simulation of complex biochemical reaction networks form cornerstones of modern biophysics. Many of the approaches developed so far capture temporal fluctuations due to the inherent stochasticity of the biophysical processes, referred to as intrinsic noise. Stochastic fluctuations, however, predominantly stem from the interplay of the network with many other-and mostly unknown-fluctuating processes, as well as with various random signals arising from the extracellular world; these sources contribute extrinsic noise. Here, we provide a computational simulation method to probe the stochastic dynamics of biochemical systems subject to both intrinsic and extrinsic noise. We develop an extrinsic chemical Langevin equation (CLE)-a physically motivated extension of the CLE-to model intrinsically noisy reaction networks embedded in a stochastically fluctuating environment. The extrinsic CLE is a continuous approximation to the chemical master equation (CME) with time-varying propensities. In our approach, noise is incorporated at the level of the CME, and it can account for the full dynamics of the exogenous noise process, irrespective of timescales and their mismatches. We show that our method accurately captures the first two moments of the stationary probability density when compared with exact stochastic simulation methods while reducing the computational runtime by several orders of magnitude. Our approach provides a method that is practical, computationally efficient, and physically accurate to study systems that are simultaneously subject to a variety of noise sources.

摘要

建模和模拟复杂的生化反应网络是现代生物物理学的基石。迄今为止开发的许多方法都捕捉到了由于生物物理过程固有的随机性而产生的时间波动,这被称为内在噪声。然而,随机波动主要源于网络与许多其他(且大多未知)波动过程的相互作用,以及来自细胞外世界的各种随机信号;这些来源会产生外在噪声。在这里,我们提供了一种计算模拟方法来探测生化系统在内在和外在噪声影响下的随机动力学。我们开发了一种外在的化学 Langevin 方程(CLE)-一种 CLE 的物理驱动扩展,用于模拟嵌入在随机波动环境中的内在噪声反应网络。外在 CLE 是具有时变倾向的化学主方程(CME)的连续近似。在我们的方法中,噪声是在 CME 层面上引入的,可以描述外生噪声过程的完整动力学,而不考虑时间尺度及其不匹配。与精确的随机模拟方法相比,我们的方法在准确捕捉稳态概率密度的前两个矩的同时,将计算运行时间减少了几个数量级。我们的方法为研究同时受到多种噪声源影响的系统提供了一种实用、高效且物理准确的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验