Liu Yujing, Zhang Stephen Y, Kleijn Istvan T, Stumpf Michael P H
School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia.
Institute of Cancer Research, London, UK.
R Soc Open Sci. 2024 Jul 10;11(7):231697. doi: 10.1098/rsos.231697. eCollection 2024 Jul.
Single-cell technologies allow us to gain insights into cellular processes at unprecedented resolution. In stem cell and developmental biology snapshot data allow us to characterize how the transcriptional states of cells change between successive cell types. Here, we show how approximate Bayesian computation (ABC) can be employed to calibrate mathematical models against single-cell data. In our simulation study, we demonstrate the pivotal role of the adequate choice of distance measures appropriate for single-cell data. We show that for good distance measures, notably optimal transport with the Sinkhorn divergence, we can infer parameters for mathematical models from simulated single-cell data. We show that the ABC posteriors can be used (i) to characterize parameter sensitivity and identify dependencies between different parameters and (ii) to construct representations of the Waddington or epigenetic landscape, which forms a popular and interpretable representation of the developmental dynamics. In summary, these results pave the way for fitting mechanistic models of stem cell differentiation to single-cell data.
单细胞技术使我们能够以前所未有的分辨率洞察细胞过程。在干细胞和发育生物学中,快照数据使我们能够描述细胞转录状态在连续细胞类型之间是如何变化的。在这里,我们展示了如何使用近似贝叶斯计算(ABC)来根据单细胞数据校准数学模型。在我们的模拟研究中,我们证明了为单细胞数据适当选择距离度量的关键作用。我们表明,对于良好的距离度量,特别是使用Sinkhorn散度的最优传输,我们可以从模拟的单细胞数据中推断数学模型的参数。我们表明,ABC后验可以用于(i)表征参数敏感性并识别不同参数之间的依赖性,以及(ii)构建沃丁顿或表观遗传景观的表示,这是发育动力学的一种流行且可解释的表示。总之,这些结果为将干细胞分化的机制模型拟合到单细胞数据铺平了道路。