Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Bioinformatics. 2017 Jul 15;33(14):i199-i207. doi: 10.1093/bioinformatics/btx256.
Integrative approaches characterizing the interactions among different types of biological molecules have been demonstrated to be useful for revealing informative biological mechanisms. One such example is the interaction between microRNA (miRNA) and messenger RNA (mRNA), whose deregulation may be sensitive to environmental insult leading to altered phenotypes. The goal of this work is to develop an effective data integration method to characterize deregulation between miRNA and mRNA due to environmental toxicant exposures. We will use data from an animal experiment designed to investigate the effect of low-dose environmental chemical exposure on normal mammary gland development in rats to motivate and evaluate the proposed method.
We propose a new network approach-integrative Joint Random Forest (iJRF), which characterizes the regulatory system between miRNAs and mRNAs using a network model. iJRF is designed to work under the high-dimension low-sample-size regime, and can borrow information across different treatment conditions to achieve more accurate network inference. It also effectively takes into account prior information of miRNA-mRNA regulatory relationships from existing databases. When iJRF is applied to the data from the environmental chemical exposure study, we detected a few important miRNAs that regulated a large number of mRNAs in the control group but not in the exposed groups, suggesting the disruption of miRNA activity due to chemical exposure. Effects of chemical exposure on two affected miRNAs were further validated using breast cancer human cell lines.
R package iJRF is available at CRAN.
pei.wang@mssm.edu or susan.teitelbaum@mssm.edu.
Supplementary data are available at Bioinformatics online.
整合方法可以描述不同类型生物分子之间的相互作用,这已被证明有助于揭示有意义的生物学机制。例如,microRNA (miRNA) 和信使 RNA (mRNA) 之间的相互作用,其失调可能对环境胁迫敏感,导致表型改变。这项工作的目的是开发一种有效的数据整合方法,以描述由于环境毒物暴露而导致的 miRNA 和 mRNA 的失调。我们将使用一项动物实验的数据来研究低剂量环境化学暴露对大鼠正常乳腺发育的影响,以激发和评估所提出的方法。
我们提出了一种新的网络方法——综合联合随机森林(iJRF),它使用网络模型来描述 miRNA 和 mRNA 之间的调控系统。iJRF 设计用于高维小样本量的情况,可以跨不同处理条件借用信息,以实现更准确的网络推断。它还有效地考虑了来自现有数据库的 miRNA-mRNA 调控关系的先验信息。当 iJRF 应用于环境化学暴露研究的数据时,我们检测到少数几个重要的 miRNA,它们在对照组中调控了大量的 mRNA,但在暴露组中没有,这表明由于化学暴露导致 miRNA 活性的破坏。使用乳腺癌人类细胞系进一步验证了化学暴露对两个受影响的 miRNA 的影响。
R 包 iJRF 可在 CRAN 上获得。
pei.wang@mssm.edu 或 susan.teitelbaum@mssm.edu。
补充数据可在生物信息学在线获得。