文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

蛋白质基因组学将体细胞突变与乳腺癌中的信号传导联系起来。

Proteogenomics connects somatic mutations to signalling in breast cancer.

作者信息

Mertins Philipp, Mani D R, Ruggles Kelly V, Gillette Michael A, Clauser Karl R, Wang Pei, Wang Xianlong, Qiao Jana W, Cao Song, Petralia Francesca, Kawaler Emily, Mundt Filip, Krug Karsten, Tu Zhidong, Lei Jonathan T, Gatza Michael L, Wilkerson Matthew, Perou Charles M, Yellapantula Venkata, Huang Kuan-lin, Lin Chenwei, McLellan Michael D, Yan Ping, Davies Sherri R, Townsend R Reid, Skates Steven J, Wang Jing, Zhang Bing, Kinsinger Christopher R, Mesri Mehdi, Rodriguez Henry, Ding Li, Paulovich Amanda G, Fenyö David, Ellis Matthew J, Carr Steven A

机构信息

The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.

Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, New York 10016, USA.

出版信息

Nature. 2016 Jun 2;534(7605):55-62. doi: 10.1038/nature18003. Epub 2016 May 25.


DOI:10.1038/nature18003
PMID:27251275
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5102256/
Abstract

Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. Here we describe quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers, of which 77 provided high-quality data. Integrated analyses provided insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. Interrogation of the 5q trans-effects against the Library of Integrated Network-based Cellular Signatures, connected loss of CETN3 and SKP1 to elevated expression of epidermal growth factor receptor (EGFR), and SKP1 loss also to increased SRC tyrosine kinase. Global proteomic data confirmed a stromal-enriched group of proteins in addition to basal and luminal clusters, and pathway analysis of the phosphoproteome identified a G-protein-coupled receptor cluster that was not readily identified at the mRNA level. In addition to ERBB2, other amplicon-associated highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates the functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.

摘要

体细胞突变在乳腺癌中已得到广泛研究,但这些基因改变对蛋白质组格局的影响仍知之甚少。在此,我们描述了对105例经基因组注释的乳腺癌进行的基于定量质谱的蛋白质组学和磷酸化蛋白质组学分析,其中77例提供了高质量数据。综合分析为体细胞癌基因组提供了见解,包括染色体缺失的后果,如基底样乳腺癌的5q缺失特征。针对基于综合网络的细胞特征库对5q的反式效应进行研究,发现CETN3和SKP1的缺失与表皮生长因子受体(EGFR)的表达升高有关,SKP1的缺失也与SRC酪氨酸激酶的增加有关。整体蛋白质组数据证实,除了基底和管腔簇之外,还存在一组富含基质的蛋白质,磷酸化蛋白质组的通路分析确定了一个在mRNA水平上不易识别的G蛋白偶联受体簇。除了ERBB2之外,还鉴定出了其他与扩增子相关的高度磷酸化激酶,包括CDK12、PAK1、PTK2、RIPK2和TLK2。我们证明,乳腺癌的蛋白质基因组分析阐明了体细胞突变的功能后果,缩小了大片段缺失和扩增区域内驱动基因的候选提名范围,并确定了治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/21715feff0a8/nihms778057f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/69bb28b4f25c/nihms778057f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/429c226e5063/nihms778057f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/33823b0bdb59/nihms778057f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/7986e5d6b94c/nihms778057f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/81fe0a5bff25/nihms778057f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/d1c5e3698300/nihms778057f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/3a75b319c447/nihms778057f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/10a1fceb9b08/nihms778057f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/21816f58a221/nihms778057f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/5b7106fab38b/nihms778057f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/56c5e193812e/nihms778057f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/f207c3c2530d/nihms778057f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/81ddd2b702fc/nihms778057f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/21715feff0a8/nihms778057f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/69bb28b4f25c/nihms778057f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/429c226e5063/nihms778057f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/33823b0bdb59/nihms778057f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/7986e5d6b94c/nihms778057f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/81fe0a5bff25/nihms778057f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/d1c5e3698300/nihms778057f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/3a75b319c447/nihms778057f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/10a1fceb9b08/nihms778057f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/21816f58a221/nihms778057f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/5b7106fab38b/nihms778057f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/56c5e193812e/nihms778057f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/f207c3c2530d/nihms778057f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/81ddd2b702fc/nihms778057f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1514/5102256/21715feff0a8/nihms778057f4.jpg

相似文献

[1]
Proteogenomics connects somatic mutations to signalling in breast cancer.

Nature. 2016-6-2

[2]
Tyrosine phosphorylation profiling reveals the signaling network characteristics of Basal breast cancer cells.

Cancer Res. 2010-9-21

[3]
Tumor Profiling: Adding Proteomics to Genomics.

Cancer Discov. 2016-6-28

[4]
Comprehensive molecular portraits of human breast tumours.

Nature. 2012-9-23

[5]
Global characterization of signalling networks associated with tamoxifen resistance in breast cancer.

FEBS J. 2013-8-19

[6]
Growth and molecular interactions of the anti-EGFR antibody cetuximab and the DNA cross-linking agent cisplatin in gefitinib-resistant MDA-MB-468 cells: new prospects in the treatment of triple-negative/basal-like breast cancer.

Int J Oncol. 2008-12

[7]
Bioinformatics exploration of PAK1 (P21-activated kinase-1) revealed potential network gene elements in breast invasive carcinoma.

J Biomol Struct Dyn. 2017-8

[8]
ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression.

Mol Cell. 2012-3-30

[9]
Survivin expression is regulated by coexpression of human epidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-kinase/AKT signaling pathway in breast cancer cells.

Cancer Res. 2005-12-1

[10]
Post-transcriptional regulation of chemokine receptor CXCR4 by estrogen in HER2 overexpressing, estrogen receptor-positive breast cancer cells.

Breast Cancer Res Treat. 2009-9

引用本文的文献

[1]
Progress and trends on machine learning in proteomics during 1997-2024: a bibliometric analysis.

Front Med (Lausanne). 2025-8-15

[2]
The coming era of proteomics-driven precision medicine.

Natl Sci Rev. 2025-7-14

[3]
Proteogenomic characterization of invasive breast tumors in young women.

NPJ Breast Cancer. 2025-8-18

[4]
SynProtX: a large-scale proteomics-based deep learning model for predicting synergistic anticancer drug combinations.

Gigascience. 2025-1-6

[5]
An arginine switch drives the stepwise activation of β-arrestin by CXCR7.

PLoS Biol. 2025-8-7

[6]
AUTO-SP: Automated Sample Preparation for Analyzing Proteins and Protein Modifications.

Anal Chem. 2025-8-12

[7]
Deciphering 17-β-hydroxysteroid dehydrogenase 4: from molecular insights to cancer therapeutics.

Cancer Cell Int. 2025-7-19

[8]
Protocol for tandem enrichment of ubiquitinated, phosphorylated, and glycosylated peptides with SCASP-PTM.

STAR Protoc. 2025-7-11

[9]
DNA2 protein destruction dictates DNA hyperexcision, cGAS-STING activation, and innate immune response in CDK12-deregulated cancers.

Proc Natl Acad Sci U S A. 2025-7-15

[10]
Human Plastins are Novel Cytoskeletal pH Sensors with a Reduced F-actin Bundling Capacity at Basic pH.

J Mol Biol. 2025-6-25

本文引用的文献

[1]
New Method for Joint Network Analysis Reveals Common and Different Coexpression Patterns among Genes and Proteins in Breast Cancer.

J Proteome Res. 2016-3-4

[2]
An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer.

Mol Cell Proteomics. 2016-3

[3]
A human interactome in three quantitative dimensions organized by stoichiometries and abundances.

Cell. 2015-10-22

[4]
Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer.

Breast Cancer Res Treat. 2015-7

[5]
Small molecule inhibition of group I p21-activated kinases in breast cancer induces apoptosis and potentiates the activity of microtubule stabilizing agents.

Breast Cancer Res. 2015-4-23

[6]
Effective Targeting of Estrogen Receptor-Negative Breast Cancers with the Protein Kinase D Inhibitor CRT0066101.

Mol Cancer Ther. 2015-6

[7]
Differential phosphorylation of DNA-PKcs regulates the interplay between end-processing and end-ligation during nonhomologous end-joining.

Mol Cell. 2015-4-2

[8]
Molecular pathways: targeting the kinase effectors of RHO-family GTPases.

Clin Cancer Res. 2015-1-1

[9]
Activation of diverse signalling pathways by oncogenic PIK3CA mutations.

Nat Commun. 2014-9-23

[10]
SPEG interacts with myotubularin, and its deficiency causes centronuclear myopathy with dilated cardiomyopathy.

Am J Hum Genet. 2014-8-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索