AMIB project, Inria Saclay, Palaiseau, France.
LIX CNRS UMR 7161, Ecole Polytechnique, Palaiseau, France.
Bioinformatics. 2017 Jul 15;33(14):i283-i292. doi: 10.1093/bioinformatics/btx269.
Kinetics is key to understand many phenomena involving RNAs, such as co-transcriptional folding and riboswitches. Exact out-of-equilibrium studies induce extreme computational demands, leading state-of-the-art methods to rely on approximated kinetics landscapes, obtained using sampling strategies that strive to generate the key landmarks of the landscape topology. However, such methods are impeded by a large level of redundancy within sampled sets. Such a redundancy is uninformative, and obfuscates important intermediate states, leading to an incomplete vision of RNA dynamics.
We introduce RNANR, a new set of algorithms for the exploration of RNA kinetics landscapes at the secondary structure level. RNANR considers locally optimal structures, a reduced set of RNA conformations, in order to focus its sampling on basins in the kinetic landscape. Along with an exhaustive enumeration, RNANR implements a novel non-redundant stochastic sampling, and offers a rich array of structural parameters. Our tests on both real and random RNAs reveal that RNANR allows to generate more unique structures in a given time than its competitors, and allows a deeper exploration of kinetics landscapes.
RNANR is freely available at https://project.inria.fr/rnalands/rnanr .
动力学对于理解涉及 RNA 的许多现象至关重要,例如共转录折叠和核糖开关。精确的非平衡研究需要极高的计算要求,导致最先进的方法依赖于通过采样策略获得的近似动力学景观,这些采样策略努力生成景观拓扑的关键地标。然而,此类方法受到采样集中大量冗余的阻碍。这种冗余是无信息的,并且掩盖了重要的中间状态,导致对 RNA 动力学的不完整认识。
我们引入了 RNANR,这是一种用于在二级结构水平上探索 RNA 动力学景观的新算法集。RNANR 考虑局部最优结构,即一组减少的 RNA 构象,以便将其采样集中在动力学景观中的盆地中。除了穷举枚举之外,RNANR 还实现了新颖的非冗余随机采样,并提供了丰富的结构参数。我们对真实和随机 RNA 的测试表明,与竞争对手相比,RNANR 允许在给定时间内生成更多独特的结构,并允许更深入地探索动力学景观。
RNANR 可在 https://project.inria.fr/rnalands/rnanr 免费获得。