Yoon Hee Rhang, Coria Aaztli, Laederach Alain, Heitsch Christine
School of Mathematics, Georgia Institute of Technology, Atlanta, GA, 30332.
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599.
Comput Math Biophys. 2019 Jan;7(1):48-63. doi: 10.1515/cmb-2019-0004. Epub 2019 Nov 15.
A riboswitch is a type of RNA molecule that regulates important biological functions by changing structure, typically under ligand-binding. We assess the extent that these ligand-bound structural alternatives are present in the Boltzmann sample, a standard RNA secondary structure prediction method, for three riboswitch test cases. We use the cluster analysis tool RNAStructProfiling to characterize the different modalities present among the suboptimal structures sampled. We compare these modalities to the putative base pairing models obtained from independent experiments using NMR or fluorescence spectroscopy. We find, somewhat unexpectedly, that profiling the Boltzmann sample captures evidence of ligand-bound conformations for two of three riboswitches studied. Moreover, this agreement between predicted modalities and experimental models is consistent with the classification of riboswitches into thermodynamic versus kinetic regulatory mechanisms. Our results support cluster analysis of Boltzmann samples by RNAStructProfiling as a possible basis for de novo identification of thermodynamic riboswitches, while highlighting the challenges for kinetic ones.
核糖开关是一种RNA分子,通常在配体结合时通过改变结构来调节重要的生物学功能。对于三个核糖开关测试案例,我们评估了这些配体结合的结构变体在玻尔兹曼样本(一种标准的RNA二级结构预测方法)中出现的程度。我们使用聚类分析工具RNAStructProfiling来表征采样的次优结构中存在的不同模式。我们将这些模式与使用核磁共振或荧光光谱法从独立实验中获得的假定碱基配对模型进行比较。我们发现,有点出乎意料的是,对玻尔兹曼样本进行分析可以捕捉到所研究的三个核糖开关中两个的配体结合构象的证据。此外,预测模式与实验模型之间的这种一致性与将核糖开关分为热力学与动力学调节机制是一致的。我们的结果支持通过RNAStructProfiling对玻尔兹曼样本进行聚类分析,作为从头识别热力学核糖开关的可能基础,同时突出了动力学核糖开关面临的挑战。