Suppr超能文献

迈向对RNA结构模式的理解:核糖开关案例研究。

Towards an understanding of RNA structural modalities: a riboswitch case study.

作者信息

Yoon Hee Rhang, Coria Aaztli, Laederach Alain, Heitsch Christine

机构信息

School of Mathematics, Georgia Institute of Technology, Atlanta, GA, 30332.

Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599.

出版信息

Comput Math Biophys. 2019 Jan;7(1):48-63. doi: 10.1515/cmb-2019-0004. Epub 2019 Nov 15.

Abstract

A riboswitch is a type of RNA molecule that regulates important biological functions by changing structure, typically under ligand-binding. We assess the extent that these ligand-bound structural alternatives are present in the Boltzmann sample, a standard RNA secondary structure prediction method, for three riboswitch test cases. We use the cluster analysis tool RNAStructProfiling to characterize the different modalities present among the suboptimal structures sampled. We compare these modalities to the putative base pairing models obtained from independent experiments using NMR or fluorescence spectroscopy. We find, somewhat unexpectedly, that profiling the Boltzmann sample captures evidence of ligand-bound conformations for two of three riboswitches studied. Moreover, this agreement between predicted modalities and experimental models is consistent with the classification of riboswitches into thermodynamic versus kinetic regulatory mechanisms. Our results support cluster analysis of Boltzmann samples by RNAStructProfiling as a possible basis for de novo identification of thermodynamic riboswitches, while highlighting the challenges for kinetic ones.

摘要

核糖开关是一种RNA分子,通常在配体结合时通过改变结构来调节重要的生物学功能。对于三个核糖开关测试案例,我们评估了这些配体结合的结构变体在玻尔兹曼样本(一种标准的RNA二级结构预测方法)中出现的程度。我们使用聚类分析工具RNAStructProfiling来表征采样的次优结构中存在的不同模式。我们将这些模式与使用核磁共振或荧光光谱法从独立实验中获得的假定碱基配对模型进行比较。我们发现,有点出乎意料的是,对玻尔兹曼样本进行分析可以捕捉到所研究的三个核糖开关中两个的配体结合构象的证据。此外,预测模式与实验模型之间的这种一致性与将核糖开关分为热力学与动力学调节机制是一致的。我们的结果支持通过RNAStructProfiling对玻尔兹曼样本进行聚类分析,作为从头识别热力学核糖开关的可能基础,同时突出了动力学核糖开关面临的挑战。

相似文献

1
Towards an understanding of RNA structural modalities: a riboswitch case study.
Comput Math Biophys. 2019 Jan;7(1):48-63. doi: 10.1515/cmb-2019-0004. Epub 2019 Nov 15.
2
The dynamic nature of RNA as key to understanding riboswitch mechanisms.
Acc Chem Res. 2011 Dec 20;44(12):1339-48. doi: 10.1021/ar200035g. Epub 2011 Jun 16.
3
Secondary structural entropy in RNA switch (Riboswitch) identification.
BMC Bioinformatics. 2015 Apr 28;16:133. doi: 10.1186/s12859-015-0523-2.
4
Thermodynamic and kinetic folding of riboswitches.
Methods Enzymol. 2015;553:193-213. doi: 10.1016/bs.mie.2014.10.060. Epub 2015 Feb 12.
5
SwiSpot: modeling riboswitches by spotting out switching sequences.
Bioinformatics. 2016 Nov 1;32(21):3252-3259. doi: 10.1093/bioinformatics/btw401. Epub 2016 Jul 4.
6
NMR resonance assignments for the SAM/SAH-binding riboswitch RNA bound to S-adenosylhomocysteine.
Biomol NMR Assign. 2018 Oct;12(2):329-334. doi: 10.1007/s12104-018-9834-3. Epub 2018 Jul 26.
7
Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
Methods Enzymol. 2015;553:235-58. doi: 10.1016/bs.mie.2014.10.062. Epub 2015 Feb 3.
8
RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme.
RNA. 2017 May;23(5):655-672. doi: 10.1261/rna.060368.116. Epub 2017 Jan 30.
9
Structural prediction of RNA switches using conditional base-pair probabilities.
PLoS One. 2019 Jun 12;14(6):e0217625. doi: 10.1371/journal.pone.0217625. eCollection 2019.

本文引用的文献

1
Challenges and approaches to predicting RNA with multiple functional structures.
RNA. 2018 Dec;24(12):1615-1624. doi: 10.1261/rna.067827.118. Epub 2018 Aug 24.
2
Modeling RNA secondary structure folding ensembles using SHAPE mapping data.
Nucleic Acids Res. 2018 Jan 9;46(1):314-323. doi: 10.1093/nar/gkx1057.
3
Efficient approximations of RNA kinetics landscape using non-redundant sampling.
Bioinformatics. 2017 Jul 15;33(14):i283-i292. doi: 10.1093/bioinformatics/btx269.
4
Direct identification of base-paired RNA nucleotides by correlated chemical probing.
RNA. 2017 Jan;23(1):6-13. doi: 10.1261/rna.058586.116. Epub 2016 Nov 1.
5
Characterizing 3D RNA structure by single molecule FRET.
Methods. 2016 Jul 1;103:57-67. doi: 10.1016/j.ymeth.2016.02.004. Epub 2016 Feb 4.
6
Multiple conformations are a conserved and regulatory feature of the RB1 5' UTR.
RNA. 2015 Jul;21(7):1274-85. doi: 10.1261/rna.049221.114. Epub 2015 May 21.
7
Profiling small RNA reveals multimodal substructural signals in a Boltzmann ensemble.
Nucleic Acids Res. 2014 Dec 16;42(22):e171. doi: 10.1093/nar/gku959. Epub 2014 Nov 11.
8
Single-molecule correlated chemical probing of RNA.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13858-63. doi: 10.1073/pnas.1407306111. Epub 2014 Sep 9.
9
RNASurface: fast and accurate detection of locally optimal potentially structured RNA segments.
Bioinformatics. 2014 Feb 15;30(4):457-63. doi: 10.1093/bioinformatics/btt701. Epub 2013 Nov 28.
10
Three-state mechanism couples ligand and temperature sensing in riboswitches.
Nature. 2013 Jul 18;499(7458):355-9. doi: 10.1038/nature12378. Epub 2013 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验