Department of Biostatistics and Epidemiology, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
BMC Med Res Methodol. 2017 Sep 7;17(1):137. doi: 10.1186/s12874-017-0412-7.
Rich literature has reported that there exists a nonlinear association between temperature and mortality. One important feature in the temperature-mortality association is the minimum mortality temperature (MMT). The commonly used approach for estimating the MMT is to determine the MMT as the temperature at which mortality is minimized in the estimated temperature-mortality association curve. Also, an approximate bootstrap approach was proposed to calculate the standard errors and the confidence interval for the MMT. However, the statistical properties of these methods were not fully studied.
Our research assessed the statistical properties of the previously proposed methods in various types of the temperature-mortality association. We also suggested an alternative approach to provide a point and an interval estimates for the MMT, which improve upon the previous approach if some prior knowledge is available on the MMT. We compare the previous and alternative methods through a simulation study and an application. In addition, as the MMT is often used as a reference temperature to calculate the cold- and heat-related relative risk (RR), we examined how the uncertainty in the MMT affects the estimation of the RRs.
The previously proposed method of estimating the MMT as a point (indicated as Argmin2) may increase bias or mean squared error in some types of temperature-mortality association. The approximate bootstrap method to calculate the confidence interval (indicated as Empirical1) performs properly achieving near 95% coverage but the length can be unnecessarily extremely large in some types of the association. We showed that an alternative approach (indicated as Empirical2), which can be applied if some prior knowledge is available on the MMT, works better reducing the bias and the mean squared error in point estimation and achieving near 95% coverage while shortening the length of the interval estimates.
The Monte Carlo simulation-based approach to estimate the MMT either as a point or as an interval was shown to perform well particularly when some prior knowledge is incorporated to reduce the uncertainty. The MMT uncertainty also can affect the estimation for the MMT-referenced RR and ignoring the MMT uncertainty in the RR estimation may lead to invalid results with respect to the bias in point estimation and the coverage in interval estimation.
大量文献报道了温度与死亡率之间存在非线性关联。温度-死亡率关联中有一个重要特征,即最低死亡率温度(MMT)。通常采用的估计 MMT 的方法是确定 MMT 为估计的温度-死亡率关联曲线中死亡率最小化的温度。此外,还提出了一种近似的自举方法来计算 MMT 的标准误差和置信区间。然而,这些方法的统计性质并未得到充分研究。
我们研究了在各种类型的温度-死亡率关联中,先前提出的方法的统计性质。我们还提出了一种替代方法,以提供 MMT 的点估计和区间估计,如果对 MMT 有一些先验知识,则可以改进该方法。我们通过模拟研究和应用比较了先前和替代方法。此外,由于 MMT 通常用作计算冷相关和热相关相对风险(RR)的参考温度,因此我们研究了 MMT 的不确定性如何影响 RR 的估计。
先前提出的将 MMT 估计为一个点的方法(表示为 Argmin2)可能会在某些类型的温度-死亡率关联中增加偏差或均方误差。用于计算置信区间的近似自举方法(表示为 Empirical1)表现良好,达到了接近 95%的覆盖率,但在某些类型的关联中,长度可能不必要地非常大。我们表明,如果对 MMT 有一些先验知识,则可以应用替代方法(表示为 Empirical2),该方法可以更好地减少点估计中的偏差和均方误差,并达到接近 95%的覆盖率,同时缩短区间估计的长度。
基于蒙特卡罗模拟的方法来估计 MMT 无论是作为一个点还是一个区间,都表现良好,特别是当结合一些先验知识来减少不确定性时。MMT 的不确定性也会影响对 MMT 参考 RR 的估计,并且忽略 RR 估计中的 MMT 不确定性可能会导致在点估计的偏差和区间估计的覆盖率方面产生无效结果。