Lin Lifeng, Zhang Jing, Hodges James S, Chu Haitao
University of Minnesota.
University of Maryland.
J Stat Softw. 2017 Aug;80. doi: 10.18637/jss.v080.i05. Epub 2017 Aug 29.
Network meta-analysis is a powerful approach for synthesizing direct and indirect evidence about multiple treatment comparisons from a collection of independent studies. At present, the most widely used method in network meta-analysis is contrast-based, in which a baseline treatment needs to be specified in each study, and the analysis focuses on modeling relative treatment effects (typically log odds ratios). However, population-averaged treatment-specific parameters, such as absolute risks, cannot be estimated by this method without an external data source or a separate model for a reference treatment. Recently, an arm-based network meta-analysis method has been proposed, and the R package provides user-friendly functions for its implementation. This package estimates both absolute and relative effects, and can handle binary, continuous, and count outcomes.
网络荟萃分析是一种强大的方法,用于综合来自一系列独立研究的关于多种治疗比较的直接和间接证据。目前,网络荟萃分析中使用最广泛的方法是基于对比的方法,其中需要在每项研究中指定一种基线治疗,并且分析侧重于对相对治疗效果(通常是对数比值比)进行建模。然而,在没有外部数据源或参考治疗的单独模型的情况下,这种方法无法估计总体平均治疗特异性参数,如绝对风险。最近,一种基于臂的网络荟萃分析方法被提出,并且R包为其实现提供了用户友好的函数。该包可以估计绝对效应和相对效应,并且能够处理二元、连续和计数结果。