Department of Computer Science, University of Verona, Verona, Italy.
Department of Diagnostics and Pathology, University Hospital Verona, Verona, Italy.
Hum Brain Mapp. 2017 Dec;38(12):5831-5844. doi: 10.1002/hbm.23804. Epub 2017 Sep 8.
Arterial spin labeling (ASL) MRI with a dual-echo readout module (DE-ASL) enables noninvasive simultaneous acquisition of cerebral blood flow (CBF)-weighted images and blood oxygenation level dependent (BOLD) contrast. Up to date, resting-state functional connectivity (FC) studies based on CBF fluctuations have been very limited, while the BOLD is still the method most frequently used. The purposes of this technical report were (i) to assess the potentiality of the DE-ASL sequence for the quantification of resting-state FC and brain organization, with respect to the conventional BOLD (cvBOLD) and (ii) to investigate the relationship between a series of complex network measures and the CBF information. Thirteen volunteers were scanned on a 3 T scanner acquiring a pseudocontinuous multislice DE-ASL sequence, from which the concomitant BOLD (ccBOLD) simultaneously to the ASL can be extracted. In the proposed comparison, the brain FC and graph-theoretical analysis were used for quantifying the connectivity strength between pairs of regions and for assessing the network model properties in all the sequences. The main finding was that the ccBOLD part of the DE-ASL sequence provided highly comparable connectivity results compared to cvBOLD. As expected, because of its different nature, ASL sequence showed different patterns of brain connectivity and graph indices compared to BOLD sequences. To conclude, the resting-state FC can be reliably detected using DE-ASL, simultaneously to CBF quantifications, whereas a single fMRI experiment precludes the quantitative measurement of BOLD signal changes. Hum Brain Mapp 38:5831-5844, 2017. © 2017 Wiley Periodicals, Inc.
动脉自旋标记 (ASL) MRI 采用双回波读取模块 (DE-ASL),可实现脑血流 (CBF) 加权图像和血氧水平依赖 (BOLD) 对比的非侵入性同步采集。迄今为止,基于 CBF 波动的静息态功能连接 (FC) 研究非常有限,而 BOLD 仍然是最常使用的方法。本技术报告的目的是:(i) 评估 DE-ASL 序列在量化静息态 FC 和脑组织结构方面的潜力,与传统 BOLD(cvBOLD)相比,以及 (ii) 研究一系列复杂网络度量与 CBF 信息之间的关系。13 名志愿者在 3T 扫描仪上进行扫描,采集伪连续多切片 DE-ASL 序列,同时从该序列中提取伴随的 BOLD(ccBOLD)。在提出的比较中,脑 FC 和图论分析用于量化区域对之间的连接强度,并评估所有序列中的网络模型特性。主要发现是,与 cvBOLD 相比,DE-ASL 序列的 ccBOLD 部分提供了高度可比的连接结果。正如预期的那样,由于其不同的性质,ASL 序列与 BOLD 序列相比显示出不同的脑连接模式和图指标。总之,使用 DE-ASL 可以可靠地检测静息态 FC,同时进行 CBF 定量测量,而单次 fMRI 实验则不能对 BOLD 信号变化进行定量测量。《人类大脑映射》38:5831-5844, 2017. © 2017 威利父子公司