Suppr超能文献

一种用于提供新型实时、运动相关扰动的机器人系统。

A robotic system for delivering novel real-time, movement dependent perturbations.

作者信息

Potocanac Zrinka, Goljat Rok, Babic Jan

机构信息

Jozef Stefan Institute, Department for Automation, Biocybernetics and Robotics, Jamova cesta 39, Ljubljana, Slovenia.

出版信息

Gait Posture. 2017 Oct;58:386-389. doi: 10.1016/j.gaitpost.2017.08.038. Epub 2017 Sep 1.

Abstract

Perturbations are often used to study movement control and balance, especially in the context of falling. Most often, discrete perturbations defined prior to the experiment are used to mimic external disturbances to balance. However, the largest proportion of falls is due to self-generated errors in weight shifting. Inspired by self-generated weight shifting errors, we created a novel, continuous mediolateral perturbation proportional to subjects' mediolateral center of mass movement with minimal delays. This perturbation was delivered by a robotic platform controlled by a real time Matlab Simulink model using kinematic data from a marker positioned at subjects' L5 as input. Fifteen healthy young adults stood as still as possible atop the robotic platform with their eyes closed. We evaluated the performance of the perturbation in terms of accuracy and delay relative to the input signal by using cross-correlations. The perturbations were accurate (r=-0.984), with delays of 154 ms. Such systematic perturbation significantly affected mediolateral sway, increasing its range (from 5.56±3.72 to 9.58 ±4.83 mm, p=0.01), SD (from 1.08±0.74 to 1.72±0.74 mm, p = 0.02), and mean power frequency (from 0.08±0.05 to 0.25±0.17 Hz, p<0.01). These perturbation characteristics enable inducing systematic, movement-dependent perturbations and open the door for future studies investigating self-generated movement errors.

摘要

扰动常被用于研究运动控制和平衡,尤其是在跌倒的情境中。最常见的是,在实验前定义的离散扰动被用来模拟对平衡的外部干扰。然而,大部分跌倒归因于体重转移过程中自身产生的误差。受自身产生的体重转移误差启发,我们创建了一种新颖的、连续的内外侧扰动,该扰动与受试者的内外侧质心运动成比例,且延迟最小。这种扰动由一个机器人平台提供,该平台由一个实时Matlab Simulink模型控制,使用位于受试者L5处的标记的运动学数据作为输入。15名健康的年轻成年人闭着眼睛尽可能静止地站在机器人平台上。我们通过互相关分析评估了扰动相对于输入信号在准确性和延迟方面的表现。扰动是准确的(r = -0.984),延迟为154毫秒。这种系统性扰动显著影响了内外侧摆动,增加了其范围(从5.56±3.72毫米增加到9.58±4.83毫米,p = 0.01)、标准差(从1.08±0.74毫米增加到1.72±0.74毫米,p = 0.02)以及平均功率频率(从0.08±0.05赫兹增加到0.25±0.17赫兹,p<0.01)。这些扰动特性能够诱发系统性的、与运动相关的扰动,并为未来研究自身产生的运动误差打开了大门。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验