Tsegaw Yetsedaw A, Góbi Sándor, Förstel Marko, Maksyutenko Pavlo, Sander Wolfram, Kaiser Ralf I
Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum , 44780 Bochum, Germany.
J Phys Chem A. 2017 Oct 12;121(40):7477-7493. doi: 10.1021/acs.jpca.7b07500. Epub 2017 Oct 2.
We irradiated binary ice mixtures of ammonia (NH) and oxygen (O) ices at astrophysically relevant temperatures of 5.5 K with energetic electrons to mimic the energy transfer process that occurs in the track of galactic cosmic rays. By monitoring the newly formed molecules online and in situ utilizing Fourier transform infrared spectroscopy complemented by temperature-programmed desorption studies with single-photon photoionization reflectron time-of-flight mass spectrometry, the synthesis of hydroxylamine (NHOH), water (HO), hydrogen peroxide (HO), nitrosyl hydride (HNO), and a series of nitrogen oxides (NO, NO, NO, NO, NO) was evident. The synthetic pathway of the newly formed species, along with their rate constants, is discussed exploiting the kinetic fitting of the coupled differential equations representing the decomposition steps in the irradiated ice mixtures. Our studies suggest the hydroxylamine is likely formed through an insertion mechanism of suprathermal oxygen into the nitrogen-hydrogen bond of ammonia at such low temperatures. An isotope-labeled experiment examining the electron-irradiated D3-ammonia-oxygen (ND-O) ices was also conducted, which confirmed our findings. This study provides clear, concise evidence of the formation of hydroxylamine by irradiation of interstellar analogue ices and can help explain the question how potential precursors to complex biorelevant molecules may form in the interstellar medium.
我们在5.5 K的天体物理相关温度下,用高能电子辐照氨(NH₃)和氧(O₂)冰的二元混合物,以模拟银河系宇宙射线径迹中发生的能量转移过程。通过在线和原位利用傅里叶变换红外光谱监测新形成的分子,并辅以程序升温脱附研究和单光子光电离反射式飞行时间质谱,明显观察到了羟胺(NH₂OH)、水(H₂O)、过氧化氢(H₂O₂)、亚硝酰氢(HNO)以及一系列氮氧化物(NO、NO₂、NO₃、NO₄、NO₅)的合成。利用代表辐照冰混合物中分解步骤的耦合微分方程的动力学拟合,讨论了新形成物种的合成途径及其速率常数。我们的研究表明,在如此低温下,羟胺可能是通过超热氧插入氨的氮氢键的插入机制形成的。还进行了一项同位素标记实验,研究电子辐照的D₃ - 氨 - 氧(ND₃ - O₂)冰,证实了我们的发现。这项研究为通过辐照星际类似冰形成羟胺提供了清晰、简洁的证据,并有助于解释复杂生物相关分子的潜在前体如何在星际介质中形成的问题。