Suppr超能文献

基于固态核磁共振的乙型流感病毒M2跨膜质子通道双组氨酸的质子化平衡与孔开放结构

Protonation equilibria and pore-opening structure of the dual-histidine influenza B virus M2 transmembrane proton channel from solid-state NMR.

作者信息

Williams Jonathan K, Shcherbakov Alexander A, Wang Jun, Hong Mei

机构信息

From the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and.

Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721.

出版信息

J Biol Chem. 2017 Oct 27;292(43):17876-17884. doi: 10.1074/jbc.M117.813998. Epub 2017 Sep 11.

Abstract

The influenza A and B viruses are the primary cause of seasonal flu epidemics. Common to both viruses is the M2 protein, a homotetrameric transmembrane proton channel that acidifies the virion after endocytosis. Although influenza A M2 (AM2) and B M2 (BM2) are functional analogs, they have little sequence homology, except for a conserved HW motif, which is responsible for proton selectivity and channel gating. Importantly, BM2 contains a second titratable histidine, His-27, in the tetrameric transmembrane domain that forms a reverse WH motif with the gating tryptophan. To understand how His-27 affects the proton conduction property of BM2, we have used solid-state NMR to characterize the pH-dependent structure and dynamics of His-27. In cholesterol-containing lipid membranes mimicking the virus envelope, N NMR spectra show that the His-27 tetrad protonates with higher p values than His-19, indicating that the solvent-accessible His-27 facilitates proton conduction of the channel by increasing the proton dissociation rates of His-19. AM2 is inhibited by the amantadine class of antiviral drugs, whereas BM2 has no known inhibitors. We measured the N-terminal interhelical separation of the BM2 channel using fluorinated Phe-5. The interhelical F-F distances show a bimodal distribution of a short distance of 7 Å and a long distance of 15-20 Å, indicating that the phenylene rings do not block small-molecule entry into the channel pore. These results give insights into the lack of amantadine inhibition of BM2 and reveal structural diversities in this family of viral proton channels.

摘要

甲型和乙型流感病毒是季节性流感流行的主要原因。这两种病毒的共同之处在于M2蛋白,它是一种同四聚体跨膜质子通道,在内吞作用后使病毒粒子酸化。尽管甲型流感病毒M2(AM2)和乙型流感病毒M2(BM2)是功能类似物,但它们的序列同源性很低,除了一个保守的HW基序,该基序负责质子选择性和通道门控。重要的是,BM2在四聚体跨膜结构域中含有第二个可滴定的组氨酸His-27,它与门控色氨酸形成一个反向的WH基序。为了了解His-27如何影响BM2的质子传导特性,我们使用固态核磁共振来表征His-27的pH依赖性结构和动力学。在模拟病毒包膜的含胆固醇脂质膜中,核磁共振谱表明His-27四联体的质子化p值高于His-19,这表明溶剂可及的His-27通过提高His-19的质子解离速率促进了通道的质子传导。AM2被金刚烷类抗病毒药物抑制,而BM2没有已知的抑制剂。我们使用氟化苯丙氨酸-5测量了BM2通道的N端螺旋间间距。螺旋间的F-F距离显示出7 Å的短距离和15 - 20 Å的长距离的双峰分布,这表明亚苯基环不会阻碍小分子进入通道孔。这些结果揭示了BM2对金刚烷不敏感的原因,并揭示了该病毒质子通道家族的结构多样性。

相似文献

4
Elucidating Relayed Proton Transfer through a His-Trp-His Triad of a Transmembrane Proton Channel by Solid-State NMR.
J Mol Biol. 2019 Jun 28;431(14):2554-2566. doi: 10.1016/j.jmb.2019.05.009. Epub 2019 May 11.
5
Functional studies reveal the similarities and differences between AM2 and BM2 proton channels from influenza viruses.
Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):272-280. doi: 10.1016/j.bbamem.2017.10.026. Epub 2017 Oct 26.
7
Flu channel drug resistance: a tale of two sites.
Protein Cell. 2010 Mar;1(3):246-58. doi: 10.1007/s13238-010-0025-y. Epub 2010 Feb 23.
8
Identification of the pore-lining residues of the BM2 ion channel protein of influenza B virus.
J Biol Chem. 2008 Jun 6;283(23):15921-31. doi: 10.1074/jbc.M710302200. Epub 2008 Apr 11.
9
The Transmembrane Conformation of the Influenza B Virus M2 Protein in Lipid Bilayers.
Sci Rep. 2019 Mar 6;9(1):3725. doi: 10.1038/s41598-019-40217-1.
10
Interactions between histidine and tryptophan residues in the BM2 proton channel from influenza B virus.
J Biochem. 2009 Apr;145(4):543-54. doi: 10.1093/jb/mvp009. Epub 2009 Jan 20.

引用本文的文献

1
Ion channel structure and function of the MERS coronavirus E protein.
Sci Adv. 2025 Jul 11;11(28):eadx1788. doi: 10.1126/sciadv.adx1788. Epub 2025 Jul 9.
3
Lipidic folding pathway of α-Synuclein via a toxic oligomer.
Nat Commun. 2025 Jan 17;16(1):760. doi: 10.1038/s41467-025-55849-3.
4
Activation of the Influenza B M2 Proton Channel (BM2).
Biochemistry. 2024 Nov 19;63(22):3011-3019. doi: 10.1021/acs.biochem.4c00607. Epub 2024 Nov 3.
5
Activation of the influenza B M2 proton channel (BM2).
bioRxiv. 2024 Jul 26:2024.07.26.605324. doi: 10.1101/2024.07.26.605324.
6
The Potential of Cyclodextrins as Inhibitors for the BM2 Protein: An In Silico Investigation.
Molecules. 2024 Jan 28;29(3):620. doi: 10.3390/molecules29030620.
7
SARS-CoV-2 Envelope Protein Forms Clustered Pentamers in Lipid Bilayers.
Biochemistry. 2022 Nov 1;61(21):2280-2294. doi: 10.1021/acs.biochem.2c00464. Epub 2022 Oct 11.
8
From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR.
Chem Rev. 2022 May 25;122(10):9848-9879. doi: 10.1021/acs.chemrev.1c00662. Epub 2021 Oct 25.
9
Spiers Memorial Lecture: Analysis and design of membrane-interactive peptides.
Faraday Discuss. 2021 Dec 24;232(0):9-48. doi: 10.1039/d1fd00061f.
10
Water orientation and dynamics in the closed and open influenza B virus M2 proton channels.
Commun Biol. 2021 Mar 12;4(1):338. doi: 10.1038/s42003-021-01847-2.

本文引用的文献

1
Structural Basis for Asymmetric Conductance of the Influenza M2 Proton Channel Investigated by Solid-State NMR Spectroscopy.
J Mol Biol. 2017 Jul 7;429(14):2192-2210. doi: 10.1016/j.jmb.2017.05.015. Epub 2017 May 20.
3
Knowns and unknowns of influenza B viruses.
Future Microbiol. 2016;11(1):119-35. doi: 10.2217/fmb.15.120. Epub 2015 Dec 18.
4
High-resolution structures of the M2 channel from influenza A virus reveal dynamic pathways for proton stabilization and transduction.
Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14260-5. doi: 10.1073/pnas.1518493112. Epub 2015 Nov 2.
5
Structure and Mechanism of the Influenza A M218-60 Dimer of Dimers.
J Am Chem Soc. 2015 Dec 2;137(47):14877-86. doi: 10.1021/jacs.5b04802. Epub 2015 Aug 31.
9
Structural basis for proton conduction and inhibition by the influenza M2 protein.
Protein Sci. 2012 Nov;21(11):1620-33. doi: 10.1002/pro.2158. Epub 2012 Oct 9.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验