Department of Chemistry, Iowa State University, Ames, Iowa, USA.
Biophys J. 2013 Apr 16;104(8):1698-708. doi: 10.1016/j.bpj.2013.02.054.
The M2 protein of the influenza virus conducts protons into the virion under external acidic pH. The proton selectivity of the tetrameric channel is controlled by a single histidine (His(37)), whereas channel gating is accomplished by a single tryptophan (Trp(41)) in the transmembrane domain of the protein. Aromatic interaction between these two functional residues has been previously observed in Raman spectra, but atomic-resolution evidence for this interaction remains scarce. Here we use high-resolution solid-state NMR spectroscopy to determine the side-chain conformation and dynamics of Trp(41) in the M2 transmembrane peptide by measuring the Trp chemical shifts, His(37)-Trp(41) distances, and indole dynamics at high and low pH. The interatomic distances constrain the Trp41 side-chain conformation to trans for χ1 and 120-135° for χ2. This t90 rotamer points the Nε1-Cε2-Cζ2 side of the indole toward the aqueous pore. The precise χ1 and χ2 angles differ by ∼20° between high and low pH. These differences, together with the known changes in the helix tilt angle between high and low pH, push the imidazole and indole rings closer together at low pH. Moreover, the measured order parameters indicate that the indole rings undergo simultaneous χ1 and χ2 torsional fluctuations at acidic pH, but only restricted χ1 fluctuations at high pH. As a result, the Trp(41) side chain periodically experiences strong cation-π interactions with His(37) at low pH as the indole sweeps through its trajectory, whereas at high pH the indole ring is further away from the imidazole. These results provide the structural basis for understanding how the His(37)-water proton exchange rate measured by NMR is reduced to the small proton flux measured in biochemical experiments. The indole dynamics, together with the known motion of the imidazolium, indicate that this compact ion channel uses economical side-chain dynamics to regulate proton conduction and gating.
流感病毒的 M2 蛋白在外部酸性 pH 值下将质子导入病毒粒子。四聚体通道的质子选择性由单个组氨酸(His(37))控制,而蛋白质跨膜域中的单个色氨酸(Trp(41))则完成通道门控。先前在拉曼光谱中观察到这两个功能残基之间的芳香相互作用,但这种相互作用的原子分辨率证据仍然很少。在这里,我们使用高分辨率固态 NMR 光谱通过测量 Trp(41)的 Trp 化学位移、His(37)-Trp(41)距离和高、低 pH 值下吲哚的动力学,来确定 M2 跨膜肽中 Trp(41)的侧链构象和动力学。原子间距离将 Trp41 侧链构象限制为反式,对于 χ1 为 120-135°,对于 χ2。这种 t90 旋转指的是吲哚 Nε1-Cε2-Cζ2 侧朝向水相孔。高、低 pH 值之间的精确 χ1 和 χ2 角度相差约 20°。这些差异,以及高、低 pH 值之间已知的螺旋倾斜角度变化,使咪唑环和吲哚环在低 pH 值下彼此更靠近。此外,所测量的顺序参数表明,在酸性 pH 值下,吲哚环经历同时的 χ1 和 χ2 扭转波动,但在高 pH 值下仅受限制的 χ1 波动。因此,当吲哚通过其轨迹时,Trp(41)侧链周期性地与 His(37)发生强阳离子-π 相互作用,而在高 pH 值下,吲哚环离咪唑环更远。这些结果为理解为什么通过 NMR 测量的 His(37)-水质子交换速率降低到生物化学实验中测量的小质子通量提供了结构基础。吲哚动力学,以及已知的咪唑鎓运动,表明这种紧凑的离子通道利用经济的侧链动力学来调节质子传导和门控。