Suppr超能文献

基于聚合物和金属的生物可吸收支架的力学行为

Mechanical behavior of polymer-based . metallic-based bioresorbable stents.

作者信息

Ang Hui Ying, Huang Ying Ying, Lim Soo Teik, Wong Philip, Joner Michael, Foin Nicolas

机构信息

National Heart Centre Singapore, Singapore, Singapore.

School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.

出版信息

J Thorac Dis. 2017 Aug;9(Suppl 9):S923-S934. doi: 10.21037/jtd.2017.06.30.

Abstract

Bioresorbable scaffolds (BRS) were developed to overcome the drawbacks of current metallic drug-eluting stents (DES), such as late in-stent restenosis and caging of the vessel permanently. The concept of the BRS is to provide transient support to the vessel during healing before being degraded and resorbed by the body, freeing the vessel and restoring vasomotion. The mechanical properties of the BRS are influenced by the choice of the material and processing methods. Due to insufficient radial strength of the bioresorbable material, BRS often required large strut profile as compared to conventional metallic DES. Having thick struts will in turn affect the deliverability of the device and may cause flow disturbance, thereby increasing the incidence of acute thrombotic events. Currently, the bioresorbable poly-l-lactic acid (PLLA) polymer and magnesium (Mg) alloys are being investigated as materials in BRS technologies. The bioresorption process, mechanical properties, observations and clinical outcomes of PLLA-based and Mg-based BRS will be examined in this review.

摘要

生物可吸收支架(BRS)的研发旨在克服当前金属药物洗脱支架(DES)的缺点,如晚期支架内再狭窄和血管的永久性束缚。BRS的理念是在愈合过程中为血管提供临时支撑,随后被身体降解和吸收,使血管得以解放并恢复血管运动。BRS的机械性能受材料选择和加工方法的影响。由于生物可吸收材料的径向强度不足,与传统金属DES相比,BRS通常需要较大的支架轮廓。支架较厚反过来会影响器械的可输送性,并可能导致血流紊乱,从而增加急性血栓事件的发生率。目前,生物可吸收聚左旋乳酸(PLLA)聚合物和镁(Mg)合金正在作为BRS技术的材料进行研究。本综述将探讨基于PLLA和基于Mg的BRS的生物吸收过程、机械性能、观察结果及临床结局。

相似文献

1
Mechanical behavior of polymer-based . metallic-based bioresorbable stents.
J Thorac Dis. 2017 Aug;9(Suppl 9):S923-S934. doi: 10.21037/jtd.2017.06.30.
2
Bioresorbable stents: Current and upcoming bioresorbable technologies.
Int J Cardiol. 2017 Feb 1;228:931-939. doi: 10.1016/j.ijcard.2016.11.258. Epub 2016 Nov 12.
4
A Randomized Trial Comparing the NeoVas Sirolimus-Eluting Bioresorbable Scaffold and Metallic Everolimus-Eluting Stents.
JACC Cardiovasc Interv. 2018 Feb 12;11(3):260-272. doi: 10.1016/j.jcin.2017.09.037.
5
Advances in the development of biodegradable coronary stents: A translational perspective.
Mater Today Bio. 2022 Jul 19;16:100368. doi: 10.1016/j.mtbio.2022.100368. eCollection 2022 Dec.
7
The Current Literature on Bioabsorbable Stents: a Review.
Curr Atheroscler Rep. 2019 Nov 25;21(12):54. doi: 10.1007/s11883-019-0816-4.

引用本文的文献

3
Evaluating Polylactic Acid and Basalt Fibre Composites as a Potential Bioabsorbable Stent Material.
Polymers (Basel). 2025 Jul 16;17(14):1948. doi: 10.3390/polym17141948.
4
Bioresorbable vascular metallic scaffolds: Current status and research trends.
Curr Opin Biomed Eng. 2022 Dec;24. doi: 10.1016/j.cobme.2022.100411. Epub 2022 Sep 8.
5
Polydiolcitrate-MoS Composite for 3D Printing Radio-Opaque, Bioresorbable Vascular Scaffolds.
ACS Appl Mater Interfaces. 2024 Aug 28;16(34):45422-45432. doi: 10.1021/acsami.4c07364. Epub 2024 Aug 5.
6
Evaluation of coronary stents: A review of types, materials, processing techniques, design, and problems.
Heliyon. 2023 Feb 9;9(2):e13575. doi: 10.1016/j.heliyon.2023.e13575. eCollection 2023 Feb.
7
A Review of the Release Profiles and Efficacies of Chemotherapy Drug-Loaded Electrospun Membranes.
Polymers (Basel). 2023 Jan 4;15(2):251. doi: 10.3390/polym15020251.
9
Sirolimus Release from Biodegradable Polymers for Coronary Stent Application: A Review.
Pharmaceutics. 2022 Feb 24;14(3):492. doi: 10.3390/pharmaceutics14030492.

本文引用的文献

1
Bioresorbable Scaffolds versus Metallic Stents in Routine PCI.
N Engl J Med. 2017 Jun 15;376(24):2319-2328. doi: 10.1056/NEJMoa1614954. Epub 2017 Mar 29.
4
Bioresorbable stents: Current and upcoming bioresorbable technologies.
Int J Cardiol. 2017 Feb 1;228:931-939. doi: 10.1016/j.ijcard.2016.11.258. Epub 2016 Nov 12.
5
A new novolimus-eluting bioresorbable coronary scaffold: Present status and future clinical perspectives.
Int J Cardiol. 2017 Jan 15;227:127-133. doi: 10.1016/j.ijcard.2016.11.033. Epub 2016 Nov 9.
8
Current bioresorbable scaffold technologies for treatment of coronary artery diseases: Do polymer and Magnesium platforms differ?
Int J Cardiol. 2016 Nov 15;223:526-528. doi: 10.1016/j.ijcard.2016.08.117. Epub 2016 Aug 7.
10
In vitro performance investigation of bioresorbable scaffolds - Standard tests for vascular stents and beyond.
Cardiovasc Revasc Med. 2016 Sep;17(6):375-83. doi: 10.1016/j.carrev.2016.05.001. Epub 2016 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验