Suppr超能文献

脑机接口中神经元类型特异性的效用:一项初步研究。

Neuron-Type-Specific Utility in a Brain-Machine Interface: a Pilot Study.

作者信息

Garcia-Garcia Martha G, Bergquist Austin J, Vargas-Perez Hector, Nagai Mary K, Zariffa Jose, Marquez-Chin Cesar, Popovic Milos R

机构信息

a Institute of Biomaterials and Biomedical Engineering, University of Toronto , Canada.

b Toronto Rehabilitation Institute, University Health Network , Canada.

出版信息

J Spinal Cord Med. 2017 Nov;40(6):715-722. doi: 10.1080/10790268.2017.1369214. Epub 2017 Sep 12.

Abstract

CONTEXT

Firing rates of single cortical neurons can be volitionally modulated through biofeedback (i.e. operant conditioning), and this information can be transformed to control external devices (i.e. brain-machine interfaces; BMIs). However, not all neurons respond to operant conditioning in BMI implementation. Establishing criteria that predict neuron utility will assist translation of BMI research to clinical applications.

FINDINGS

Single cortical neurons (n=7) were recorded extracellularly from primary motor cortex of a Long-Evans rat. Recordings were incorporated into a BMI involving up-regulation of firing rate to control the brightness of a light-emitting-diode and subsequent reward. Neurons were classified as 'fast-spiking', 'bursting' or 'regular-spiking' according to waveform-width and intrinsic firing patterns. Fast-spiking and bursting neurons were found to up-regulate firing rate by a factor of 2.43±1.16, demonstrating high utility, while regular-spiking neurons decreased firing rates on average by a factor of 0.73±0.23, demonstrating low utility.

CONCLUSION/CLINICAL RELEVANCE: The ability to select neurons with high utility will be important to minimize training times and maximize information yield in future clinical BMI applications. The highly contrasting utility observed between fast-spiking and bursting neurons versus regular-spiking neurons allows for the hypothesis to be advanced that intrinsic electrophysiological properties may be useful criteria that predict neuron utility in BMI implementation.

摘要

背景

单个皮质神经元的放电频率可通过生物反馈(即操作性条件反射)进行自主调节,并且该信息可被转化用于控制外部设备(即脑机接口;BMI)。然而,并非所有神经元在BMI实施中都对操作性条件反射有反应。建立预测神经元效用的标准将有助于将BMI研究转化为临床应用。

研究结果

从一只Long-Evans大鼠的初级运动皮层细胞外记录了单个皮质神经元(n = 7)。记录被纳入一个BMI,该BMI涉及通过提高放电频率来控制发光二极管的亮度并随后给予奖励。根据波形宽度和固有放电模式,神经元被分类为“快速放电”、“爆发性放电”或“规则放电”。发现快速放电和爆发性放电神经元的放电频率上调了2.43±1.16倍,显示出高效用,而规则放电神经元的放电频率平均下降了0.73±0.23倍,显示出低效用。

结论/临床意义:选择高效用神经元的能力对于在未来临床BMI应用中最小化训练时间和最大化信息产量将很重要。在快速放电和爆发性放电神经元与规则放电神经元之间观察到的高度对比的效用使得可以提出这样的假设,即固有电生理特性可能是预测BMI实施中神经元效用的有用标准。

相似文献

1

本文引用的文献

3
High-performance neuroprosthetic control by an individual with tetraplegia.高位截瘫患者的高性能神经假体控制。
Lancet. 2013 Feb 16;381(9866):557-64. doi: 10.1016/S0140-6736(12)61816-9. Epub 2012 Dec 17.
6
Direct control of paralysed muscles by cortical neurons.皮质神经元对麻痹肌肉的直接控制。
Nature. 2008 Dec 4;456(7222):639-42. doi: 10.1038/nature07418. Epub 2008 Oct 15.
7
Cortical control of a prosthetic arm for self-feeding.用于自主进食的假肢手臂的皮质控制。
Nature. 2008 Jun 19;453(7198):1098-101. doi: 10.1038/nature06996. Epub 2008 May 28.
10
A high-performance brain-computer interface.一种高性能脑机接口。
Nature. 2006 Jul 13;442(7099):195-8. doi: 10.1038/nature04968.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验