Garcia-Garcia Martha G, Bergquist Austin J, Vargas-Perez Hector, Nagai Mary K, Zariffa Jose, Marquez-Chin Cesar, Popovic Milos R
a Institute of Biomaterials and Biomedical Engineering, University of Toronto , Canada.
b Toronto Rehabilitation Institute, University Health Network , Canada.
J Spinal Cord Med. 2017 Nov;40(6):715-722. doi: 10.1080/10790268.2017.1369214. Epub 2017 Sep 12.
Firing rates of single cortical neurons can be volitionally modulated through biofeedback (i.e. operant conditioning), and this information can be transformed to control external devices (i.e. brain-machine interfaces; BMIs). However, not all neurons respond to operant conditioning in BMI implementation. Establishing criteria that predict neuron utility will assist translation of BMI research to clinical applications.
Single cortical neurons (n=7) were recorded extracellularly from primary motor cortex of a Long-Evans rat. Recordings were incorporated into a BMI involving up-regulation of firing rate to control the brightness of a light-emitting-diode and subsequent reward. Neurons were classified as 'fast-spiking', 'bursting' or 'regular-spiking' according to waveform-width and intrinsic firing patterns. Fast-spiking and bursting neurons were found to up-regulate firing rate by a factor of 2.43±1.16, demonstrating high utility, while regular-spiking neurons decreased firing rates on average by a factor of 0.73±0.23, demonstrating low utility.
CONCLUSION/CLINICAL RELEVANCE: The ability to select neurons with high utility will be important to minimize training times and maximize information yield in future clinical BMI applications. The highly contrasting utility observed between fast-spiking and bursting neurons versus regular-spiking neurons allows for the hypothesis to be advanced that intrinsic electrophysiological properties may be useful criteria that predict neuron utility in BMI implementation.
单个皮质神经元的放电频率可通过生物反馈(即操作性条件反射)进行自主调节,并且该信息可被转化用于控制外部设备(即脑机接口;BMI)。然而,并非所有神经元在BMI实施中都对操作性条件反射有反应。建立预测神经元效用的标准将有助于将BMI研究转化为临床应用。
从一只Long-Evans大鼠的初级运动皮层细胞外记录了单个皮质神经元(n = 7)。记录被纳入一个BMI,该BMI涉及通过提高放电频率来控制发光二极管的亮度并随后给予奖励。根据波形宽度和固有放电模式,神经元被分类为“快速放电”、“爆发性放电”或“规则放电”。发现快速放电和爆发性放电神经元的放电频率上调了2.43±1.16倍,显示出高效用,而规则放电神经元的放电频率平均下降了0.73±0.23倍,显示出低效用。
结论/临床意义:选择高效用神经元的能力对于在未来临床BMI应用中最小化训练时间和最大化信息产量将很重要。在快速放电和爆发性放电神经元与规则放电神经元之间观察到的高度对比的效用使得可以提出这样的假设,即固有电生理特性可能是预测BMI实施中神经元效用的有用标准。