Iraji Armin, Calhoun Vince D, Wiseman Natalie M, Davoodi-Bojd Esmaeil, Avanaki Mohammad R N, Haacke E Mark, Kou Zhifeng
Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
The Mind Research Network & LBERI, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA.
Neuroimage. 2016 Jul 1;134:494-507. doi: 10.1016/j.neuroimage.2016.04.006. Epub 2016 Apr 12.
Spontaneous fluctuations of resting state functional MRI (rsfMRI) have been widely used to understand the macro-connectome of the human brain. However, these fluctuations are not synchronized among subjects, which leads to limitations and makes utilization of first-level model-based methods challenging. Considering this limitation of rsfMRI data in the time domain, we propose to transfer the spatiotemporal information of the rsfMRI data to another domain, the connectivity domain, in which each value represents the same effect across subjects. Using a set of seed networks and a connectivity index to calculate the functional connectivity for each seed network, we transform data into the connectivity domain by generating connectivity weights for each subject. Comparison of the two domains using a data-driven method suggests several advantages in analyzing data using data-driven methods in the connectivity domain over the time domain. We also demonstrate the feasibility of applying model-based methods in the connectivity domain, which offers a new pathway for the use of first-level model-based methods on rsfMRI data. The connectivity domain, furthermore, demonstrates a unique opportunity to perform first-level feature-based data-driven and model-based analyses. The connectivity domain can be constructed from any technique that identifies sets of features that are similar across subjects and can greatly help researchers in the study of macro-connectome brain function by enabling us to perform a wide range of model-based and data-driven approaches on rsfMRI data, decreasing susceptibility of analysis techniques to parameters that are not related to brain connectivity information, and evaluating both static and dynamic functional connectivity of the brain from a new perspective.
静息态功能磁共振成像(rsfMRI)的自发波动已被广泛用于理解人类大脑的宏观连接组。然而,这些波动在不同受试者之间并不同步,这导致了局限性,并使得基于一级模型的方法的应用具有挑战性。考虑到rsfMRI数据在时域中的这一局限性,我们建议将rsfMRI数据的时空信息转移到另一个域,即连接域,其中每个值代表跨受试者的相同效应。使用一组种子网络和一个连接指数来计算每个种子网络的功能连接性,我们通过为每个受试者生成连接权重将数据转换到连接域。使用数据驱动方法对这两个域进行比较表明,在连接域中使用数据驱动方法分析数据比在时域中具有几个优势。我们还证明了在连接域中应用基于模型的方法的可行性,这为在rsfMRI数据上使用基于一级模型的方法提供了一条新途径。此外,连接域展示了进行基于一级特征的数据驱动和基于模型分析的独特机会。连接域可以由任何识别跨受试者相似特征集的技术构建,并且通过使我们能够对rsfMRI数据执行广泛的基于模型和数据驱动的方法,降低分析技术对与脑连接信息无关的参数的敏感性,并从新的角度评估大脑的静态和动态功能连接性,从而极大地帮助研究人员研究宏观连接组脑功能。