Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
mBio. 2017 Sep 12;8(5):e01089-17. doi: 10.1128/mBio.01089-17.
One of the mechanisms of β-lactam antibiotic resistance requires the activity of d,d-carboxypeptidases (d,d-CPases) involved in peptidoglycan (PG) synthesis, making them putative targets for new antibiotic development. The activity of PG-synthesizing enzymes is often correlated with their association with other proteins. The PG layer is maintained in the periplasm between the two membranes of the Gram-negative cell envelope. Because no methods existed to detect interactions in this compartment, we have developed and validated a Förster resonance energy transfer assay. Using the fluorescent-protein donor-acceptor pair mNeonGreen-mCherry, periplasmic protein interactions were detected in fixed and in living bacteria, in single samples or in plate reader 96-well format. We show that the d,d-CPases PBP5, PBP6a, and PBP6b of change dimer conformation between resting and active states. Complementation studies and changes in localization suggest that these d,d-CPases are not redundant but that their balanced activity is required for robust PG synthesis. The periplasmic space between the outer and the inner membrane of Gram-negative bacteria contains many essential regulatory, transport, and cell wall-synthesizing and -hydrolyzing proteins. To date, no assay is available to determine protein interactions in this compartment. We have developed a periplasmic protein interaction assay for living and fixed bacteria in single samples or 96-well-plate format. Using this assay, we were able to demonstrate conformation changes related to the activity of proteins that could not have been detected by any other living-cell method available. The assay uniquely expands our toolbox for antibiotic screening and mode-of-action studies.
β-内酰胺类抗生素耐药性的机制之一需要 d,d-羧肽酶(d,d-CPases)的活性参与肽聚糖(PG)的合成,这使得它们成为新抗生素开发的潜在靶点。PG 合成酶的活性通常与其与其他蛋白质的结合有关。PG 层在革兰氏阴性细胞包膜的两层膜之间的周质中得以维持。由于没有方法可以检测该隔室中的相互作用,因此我们开发并验证了Förster 共振能量转移测定法。使用荧光蛋白供体-受体对 mNeonGreen-mCherry,我们在固定和活细菌中、在单个样品或板读数 96 孔格式中检测到周质蛋白相互作用。我们表明,d,d-CPases PBP5、PBP6a 和 PBP6b 在静止和活跃状态之间改变二聚体构象。互补研究和定位变化表明,这些 d,d-CPases 不是冗余的,而是它们平衡的活性对于强大的 PG 合成是必需的。革兰氏阴性细菌的外膜和内膜之间的周质空间包含许多必需的调节、运输以及细胞壁合成和水解蛋白。迄今为止,还没有测定该隔室中蛋白质相互作用的方法。我们已经开发了一种用于活细菌和固定细菌的周质蛋白相互作用测定法,可在单个样品或 96 孔板格式中进行。使用该测定法,我们能够证明与无法通过任何其他可用的活细胞方法检测到的蛋白质活性相关的构象变化。该测定法独特地扩展了我们用于抗生素筛选和作用模式研究的工具包。