Prentice Jojo A, Kasivisweswaran Sandhya, van de Weerd Robert, Bridges Andrew A
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh PA, USA.
Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh PA, USA.
bioRxiv. 2024 Jul 15:2024.07.15.603607. doi: 10.1101/2024.07.15.603607.
Bacteria frequently colonize niches by forming multicellular communities called biofilms. To explore new territories, cells exit biofilms through an active process called dispersal. Biofilm dispersal is essential for bacteria to spread between infection sites, yet how the process is executed at the single-cell level remains mysterious. Here, we characterize dispersal at unprecedented resolution for the global pathogen . To do so, we first developed a far-red cell-labeling strategy that overcomes pitfalls of fluorescent protein-based approaches. We reveal that dispersal initiates at the biofilm periphery and ~25% of cells never disperse. We define novel micro-scale patterns that occur during dispersal, including biofilm compression and the formation of dynamic channels. These patterns are attenuated in mutants that reduce overall dispersal or that increase dispersal at the cost of homogenizing local mechanical properties. Collectively, our findings provide fundamental insights into the mechanisms of biofilm dispersal, advancing our understanding of how pathogens disseminate.
细菌经常通过形成称为生物膜的多细胞群落来定殖于生态位。为了探索新的领地,细胞通过一个称为扩散的主动过程离开生物膜。生物膜扩散对于细菌在感染部位之间传播至关重要,但该过程在单细胞水平上是如何执行的仍然是个谜。在这里,我们以前所未有的分辨率对全球病原体的扩散进行了表征。为此,我们首先开发了一种远红光细胞标记策略,该策略克服了基于荧光蛋白方法的缺陷。我们发现扩散始于生物膜周边,约25%的细胞从未扩散。我们定义了扩散过程中出现的新型微观尺度模式,包括生物膜压缩和动态通道的形成。这些模式在降低总体扩散或增加扩散但以局部机械性能均匀化为代价的突变体中减弱。总的来说,我们的发现为生物膜扩散机制提供了基本见解,推进了我们对病原体传播方式的理解。