Maravall Darío, de Lope Javier, Fuentes Juan P
Department of Artificial Intelligence, Faculty of Computer Science, Universidad Politécnica de MadridMadrid, Spain.
Front Neurorobot. 2017 Aug 29;11:46. doi: 10.3389/fnbot.2017.00046. eCollection 2017.
We introduce a hybrid algorithm for the self-semantic location and autonomous navigation of robots using entropy-based vision and visual topological maps. In visual topological maps the visual landmarks are considered as leave points for guiding the robot to reach a target point (robot homing) in indoor environments. These visual landmarks are defined from images of relevant objects or characteristic scenes in the environment. The entropy of an image is directly related to the presence of a unique object or the presence of several different objects inside it: the lower the entropy the higher the probability of containing a single object inside it and, conversely, the higher the entropy the higher the probability of containing several objects inside it. Consequently, we propose the use of the entropy of images captured by the robot not only for the landmark searching and detection but also for obstacle avoidance. If the detected object corresponds to a landmark, the robot uses the suggestions stored in the visual topological map to reach the next landmark or to finish the mission. Otherwise, the robot considers the object as an obstacle and starts a collision avoidance maneuver. In order to validate the proposal we have defined an experimental framework in which the visual bug algorithm is used by an Unmanned Aerial Vehicle (UAV) in typical indoor navigation tasks.
我们介绍了一种混合算法,用于机器人基于熵的视觉和视觉拓扑地图的自语义定位与自主导航。在视觉拓扑地图中,视觉地标被视为引导机器人在室内环境中到达目标点(机器人归位)的离开点。这些视觉地标由环境中相关物体或特征场景的图像定义。图像的熵与其中独特物体的存在或几个不同物体的存在直接相关:熵越低,其内部包含单个物体的概率越高,反之,熵越高,其内部包含多个物体的概率越高。因此,我们提议将机器人捕获图像的熵不仅用于地标搜索和检测,还用于避障。如果检测到的物体对应于一个地标,机器人使用存储在视觉拓扑地图中的建议到达下一个地标或完成任务。否则,机器人将该物体视为障碍物并开始碰撞避免机动。为了验证该提议,我们定义了一个实验框架,其中无人机在典型的室内导航任务中使用视觉昆虫算法。