Suppr超能文献

基于目标的移动机器人可靠视觉导航

Object-Based Reliable Visual Navigation for Mobile Robot.

机构信息

Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.

出版信息

Sensors (Basel). 2022 Mar 20;22(6):2387. doi: 10.3390/s22062387.

Abstract

Visual navigation is of vital importance for autonomous mobile robots. Most existing practical perception-aware based visual navigation methods generally require prior-constructed precise metric maps, and learning-based methods rely on large training to improve their generality. To improve the reliability of visual navigation, in this paper, we propose a novel object-level topological visual navigation method. Firstly, a lightweight object-level topological semantic map is constructed to release the dependence on the precise metric map, where the semantic associations between objects are stored via graph memory and topological organization is performed. Then, we propose an object-based heuristic graph search method to select the global topological path with the optimal and shortest characteristics. Furthermore, to reduce the global cumulative error, a global path segmentation strategy is proposed to divide the global topological path on the basis of active visual perception and object guidance. Finally, to achieve adaptive smooth trajectory generation, a Bernstein polynomial-based smooth trajectory refinement method is proposed by transforming trajectory generation into a nonlinear planning problem, achieving smooth multi-segment continuous navigation. Experimental results demonstrate the feasibility and efficiency of our method on both simulation and real-world scenarios. The proposed method also obtains better navigation success rate (SR) and success weighted by inverse path length (SPL) than the state-of-the-art methods.

摘要

视觉导航对于自主移动机器人至关重要。大多数现有的基于感知的实用视觉导航方法通常需要预先构建精确的度量地图,而基于学习的方法则依赖于大量的训练来提高其通用性。为了提高视觉导航的可靠性,本文提出了一种新颖的基于对象级的拓扑视觉导航方法。首先,构建了一个轻量级的基于对象级的拓扑语义地图,以释放对精确度量地图的依赖,其中通过图记忆存储对象之间的语义关联,并进行拓扑组织。然后,提出了一种基于对象的启发式图搜索方法,以选择具有最优和最短特征的全局拓扑路径。此外,为了减少全局累积误差,提出了一种基于全局路径分割策略,该策略基于主动视觉感知和对象引导对全局拓扑路径进行分割。最后,为了实现自适应平滑轨迹生成,提出了一种基于 Bernstein 多项式的平滑轨迹细化方法,通过将轨迹生成转化为非线性规划问题,实现了多段连续平滑导航。实验结果证明了该方法在模拟和真实场景中的可行性和效率。与最先进的方法相比,所提出的方法在导航成功率 (SR) 和基于逆路径长度的成功率 (SPL) 方面都取得了更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85ca/8949785/ac7da0ddab9c/sensors-22-02387-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验