Center for Device Thermography and Reliability (CDTR), H. H. Wills Physics Laboratory, University of Bristol , Tyndall Avenue, Bristol BS8 1TL, U.K.
Qorvo Inc. , 500 W. Renner Road, Richardson, Texas 75080, United States.
ACS Appl Mater Interfaces. 2017 Oct 4;9(39):34416-34422. doi: 10.1021/acsami.7b08961. Epub 2017 Sep 21.
GaN-on-diamond device cooling can be enhanced by reducing the effective thermal boundary resistance (TBR) of the GaN/diamond interface. The thermal properties of this interface and of the polycrystalline diamond grown onto GaN using SiN and AlN barrier layers as well as without any barrier layer under different growth conditions are investigated and systematically compared for the first time. TBR values are correlated with transmission electron microscopy analysis, showing that the lowest reported TBR (∼6.5 m K/GW) is obtained by using ultrathin SiN barrier layers with a smooth interface formed, whereas the direct growth of diamond onto GaN results in one to two orders of magnitude higher TBR due to the formation of a rough interface. AlN barrier layers can produce a TBR as low as SiN barrier layers in some cases; however, their TBR are rather dependent on growth conditions. We also observe a decreasing diamond thermal resistance with increasing growth temperature.
通过降低 GaN/ 金刚石界面的有效热阻(TBR),可以增强 GaN 上金刚石器件的冷却效果。本文首次对不同生长条件下具有 SiN 和 AlN 势垒层以及无势垒层的 GaN/ 金刚石界面和多晶金刚石的热性能进行了研究和系统比较。TBR 值与透射电子显微镜分析相关联,结果表明,通过使用形成光滑界面的超薄 SiN 势垒层,可以获得最低的 TBR(约 6.5 mK/W),而 GaN 上直接生长金刚石会由于形成粗糙界面而导致 TBR 高出一到两个数量级。在某些情况下,AlN 势垒层也可以产生与 SiN 势垒层相当低的 TBR,但它们的 TBR 相当依赖于生长条件。我们还观察到随着生长温度的升高,金刚石热阻呈下降趋势。