Texas State University , San Marcos , Texas 78666 , United States.
Qorvo Inc. , 500 W. Renner Road , Richardson , Texas 75080 , United States.
ACS Appl Mater Interfaces. 2018 Jul 18;10(28):24302-24309. doi: 10.1021/acsami.8b07014. Epub 2018 Jul 6.
The development of GaN-on-diamond devices holds much promise for the creation of high-power density electronics. Inherent to the growth of these devices, a dielectric layer is placed between the GaN and diamond, which can contribute significantly to the overall thermal resistance of the structure. In this work, we explore the role of different interfaces in contributing to the thermal resistance of the interface of GaN/diamond layers, specifically using 5 nm layers of AlN, SiN, or no interlayer at all. Using time-domain thermoreflectance along with electron energy loss spectroscopy, we were able to determine that a SiN interfacial layer provided the lowest thermal boundary resistance (<10 mK/GW) because of the formation of an Si-C-N layer at the interface. The AlN and no interlayer samples were observed to have TBRs greater than 20 mK/GW as a result of a harsh growth environment that roughened the interface (enhancing phonon scattering) when the GaN was not properly protected.
氮化镓在金刚石上的器件的发展为高功率密度电子学的创造带来了很大的希望。在这些器件的生长过程中,会在 GaN 和金刚石之间放置一层介电层,这会显著增加结构的整体热阻。在这项工作中,我们研究了不同界面在 GaN/金刚石层界面热阻中所起的作用,特别是使用了 5nm 厚的 AlN、SiN 或根本没有界面层。通过使用时域热反射率和电子能量损失谱,我们能够确定 SiN 界面层提供了最低的热边界电阻(<10mK/GW),因为在界面处形成了 Si-C-N 层。而 AlN 和无界面层的样品的 TBR 大于 20mK/GW,这是由于 GaN 没有得到适当保护时,恶劣的生长环境使界面变得粗糙(增强了声子散射)。