Suppr超能文献

基于局部原理邻域的自适应非局部均值方法在低剂量 CT 图像中的噪声/伪影减少。

Adaptive non-local means on local principle neighborhood for noise/artifacts reduction in low-dose CT images.

机构信息

School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.

School of Information Science and Engineering, Qufu Normal University, Rizhao, Shandong, 276826, China.

出版信息

Med Phys. 2017 Sep;44(9):e230-e241. doi: 10.1002/mp.12388.

Abstract

PURPOSE

Low-dose CT (LDCT) technique can reduce the x-ray radiation exposure to patients at the cost of degraded images with severe noise and artifacts. Non-local means (NLM) filtering has shown its potential in improving LDCT image quality. However, currently most NLM-based approaches employ a weighted average operation directly on all neighbor pixels with a fixed filtering parameter throughout the NLM filtering process, ignoring the non-stationary noise nature of LDCT images. In this paper, an adaptive NLM filtering scheme on local principle neighborhoods (PC-NLM) is proposed for structure-preserving noise/artifacts reduction in LDCT images.

METHODS

Instead of using neighboring patches directly, in the PC-NLM scheme, the principle component analysis (PCA) is first applied on local neighboring patches of the target patch to decompose the local patches into uncorrelated principle components (PCs), then a NLM filtering is used to regularize each PC of the target patch and finally the regularized components is transformed to get the target patch in image domain. Especially, in the NLM scheme, the filtering parameter is estimated adaptively from local noise level of the neighborhood as well as the signal-to-noise ratio (SNR) of the corresponding PC, which guarantees a "weaker" NLM filtering on PCs with higher SNR and a "stronger" filtering on PCs with lower SNR. The PC-NLM procedure is iteratively performed several times for better removal of the noise and artifacts, and an adaptive iteration strategy is developed to reduce the computational load by determining whether a patch should be processed or not in next round of the PC-NLM filtering.

RESULTS

The effectiveness of the presented PC-NLM algorithm is validated by experimental phantom studies and clinical studies. The results show that it can achieve promising gain over some state-of-the-art methods in terms of artifact suppression and structure preservation.

CONCLUSIONS

With the use of PCA on local neighborhoods to extract principal structural components, as well as adaptive NLM filtering on PCs of the target patch using filtering parameter estimated based on the local noise level and corresponding SNR, the proposed PC-NLM method shows its efficacy in preserving fine anatomical structures and suppressing noise/artifacts in LDCT images.

摘要

目的

低剂量 CT(LDCT)技术可以降低患者的 X 射线辐射暴露,但代价是图像质量严重下降,存在严重的噪声和伪影。非局部均值(NLM)滤波已显示出其在改善 LDCT 图像质量方面的潜力。然而,目前大多数基于 NLM 的方法在整个 NLM 滤波过程中直接对所有邻域像素进行加权平均操作,并使用固定的滤波参数,忽略了 LDCT 图像的非平稳噪声特性。本文提出了一种基于局部主邻域(PC-NLM)的自适应 NLM 滤波方案,用于保留结构的 LDCT 图像噪声/伪影去除。

方法

在 PC-NLM 方案中,不是直接使用邻域补丁,而是首先对目标补丁的局部邻域补丁应用主成分分析(PCA),将局部补丁分解为不相关的主成分(PC),然后对每个 PC 进行 NLM 滤波正则化,最后将正则化的 PC 转换回图像域得到目标补丁。特别是,在 NLM 方案中,滤波参数是根据邻域的局部噪声水平和相应 PC 的信噪比(SNR)自适应估计的,这保证了对 SNR 较高的 PC 进行较弱的 NLM 滤波,对 SNR 较低的 PC 进行较强的滤波。PC-NLM 过程会迭代执行几次,以更好地去除噪声和伪影,并开发了一种自适应迭代策略,通过确定在下一轮 PC-NLM 滤波中是否处理补丁来减少计算负担。

结果

通过实验体模研究和临床研究验证了所提出的 PC-NLM 算法的有效性。结果表明,在抑制伪影和保留结构方面,它可以比一些最先进的方法获得有希望的增益。

结论

使用局部邻域上的 PCA 提取主要结构成分,以及基于局部噪声水平和相应 SNR 估计的目标补丁 PC 上的自适应 NLM 滤波,所提出的 PC-NLM 方法在保留 LDCT 图像中的精细解剖结构和抑制噪声/伪影方面显示出其有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验