Suppr超能文献

利用多次 PET 重建进行非局部均值去噪。

Non-local mean denoising using multiple PET reconstructions.

机构信息

Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland.

Geneva University Neurocenter, Geneva University, 1205, Geneva, Switzerland.

出版信息

Ann Nucl Med. 2021 Feb;35(2):176-186. doi: 10.1007/s12149-020-01550-y. Epub 2020 Nov 26.

Abstract

OBJECTIVES

Non-local mean (NLM) filtering has been broadly used for denoising of natural and medical images. The NLM filter relies on the redundant information, in the form of repeated patterns/textures, in the target image to discriminate the underlying structures/signals from noise. In PET (or SPECT) imaging, the raw data could be reconstructed using different parameters and settings, leading to different representations of the target image, which contain highly similar structures/signals to the target image contaminated with different noise levels (or properties). In this light, multiple-reconstruction NLM filtering (MR-NLM) is proposed, which relies on the redundant information provided by the different reconstructions of the same PET data (referred to as auxiliary images) to conduct the denoising process.

METHODS

Implementation of the MR-NLM approach involved the use of twelve auxiliary PET images (in addition to the target image) reconstructed using the same iterative reconstruction algorithm with different numbers of iterations and subsets. For each target voxel, the patches of voxels at the same location are extracted from the auxiliary PET images based on which the NLM denoising process is conducted. Through this, the exhaustive search scheme performed in the conventional NLM method to find similar patches of voxels is bypassed. The performance evaluation of the MR-NLM filter was carried out against the conventional NLM, Gaussian and bilateral post-reconstruction approaches using the experimental Jaszczak phantom and 25 whole-body PET/CT clinical studies.

RESULTS

The signal-to-noise ratio (SNR) in the experimental Jaszczak phantom study improved from 25.1 when using Gaussian filtering to 27.9 and 28.8 when the conventional NLM and MR-NLM methods were applied (p value < 0.05), respectively. Conversely, the Gaussian filter led to quantification bias of 35.4%, while NLM and MR-NLM approaches resulted in a bias of 32.0% and 31.1% (p value < 0.05), respectively. The clinical studies further confirm the superior performance of the MR-NLM method, wherein the quantitative bias measured in malignant lesions (hot spots) decreased from - 12.3 ± 2.3% when using the Gaussian filter to - 3.5 ± 1.3% and - 2.2 ± 1.2% when using the NLM and MR-NLM approaches (p value < 0.05), respectively.

CONCLUSION

The MR-NLM approach exhibited promising performance in terms of noise suppression and signal preservation for PET images, thus translating into higher SNR compared to the conventional NLM approach. Despite the promising performance of the MR-NLM approach, the additional computational burden owing to the requirement of multiple PET reconstruction still needs to be addressed.

摘要

目的

非局部均值(NLM)滤波已广泛用于自然和医学图像的去噪。NLM 滤波器依赖于目标图像中重复模式/纹理的冗余信息,以区分潜在结构/信号与噪声。在 PET(或 SPECT)成像中,原始数据可以使用不同的参数和设置进行重建,从而导致目标图像的不同表示,这些表示包含与目标图像高度相似的结构/信号,但受到不同噪声水平(或特性)的污染。有鉴于此,提出了多重建 NLM 滤波(MR-NLM)方法,该方法依赖于同一 PET 数据的不同重建(称为辅助图像)提供的冗余信息来进行去噪过程。

方法

MR-NLM 方法的实现涉及使用十二张辅助 PET 图像(除目标图像外),这些图像使用相同的迭代重建算法,迭代次数和子集不同。对于每个目标体素,基于从辅助 PET 图像中提取的同一位置的体素的块来执行 NLM 去噪过程。通过这种方式,避免了在常规 NLM 方法中执行的搜索相似体素块的穷举搜索方案。使用实验性 Jaszczak 体模和 25 项全身 PET/CT 临床研究,对 MR-NLM 滤波器与常规 NLM、高斯和双边后重建方法的性能进行了评估。

结果

在实验性 Jaszczak 体模研究中,使用高斯滤波时的信噪比(SNR)从 25.1 提高到 27.9 和 28.8,当应用常规 NLM 和 MR-NLM 方法时(p 值<0.05)。相反,高斯滤波器导致 35.4%的定量偏差,而 NLM 和 MR-NLM 方法分别导致 32.0%和 31.1%的偏差(p 值<0.05)。临床研究进一步证实了 MR-NLM 方法的优越性能,其中恶性病变(热点)中的定量偏差从使用高斯滤波器时的-12.3±2.3%降低到使用 NLM 和 MR-NLM 方法时的-3.5±1.3%和-2.2±1.2%(p 值<0.05)。

结论

MR-NLM 方法在 PET 图像的噪声抑制和信号保留方面表现出良好的性能,因此与常规 NLM 方法相比,具有更高的 SNR。尽管 MR-NLM 方法具有有前景的性能,但由于需要多次 PET 重建而导致的额外计算负担仍需要解决。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f3c/7895794/632cf65713c2/12149_2020_1550_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验