Suppr超能文献

热纤梭菌外切葡聚糖酶 Cel6B 的模块化组织影响纤维素水解和设计型纤维小体的效率。

Modular Organization of the Thermobifida fusca Exoglucanase Cel6B Impacts Cellulose Hydrolysis and Designer Cellulosome Efficiency.

机构信息

Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.

Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel.

出版信息

Biotechnol J. 2017 Oct;12(10). doi: 10.1002/biot.201700205. Epub 2017 Sep 28.

Abstract

UNLABELLED

Cellulose deconstruction can be achieved by three distinct enzymatic paradigms: free enzymes, multifunctional enzymes, and self-assembled, multi-enzyme complexes (cellulosomes). To study their comparative efficiency, the simple and efficient cellulolytic system of the aerobic bacterium, Thermobifida fusca, is developed as an enzymatic model. In previous studies, most of its cellulases are successfully converted to the cellulosomal mode and exhibited high cellulolytic activities, except for Cel6B, a key exoglucanase of the T. fusca enzymatic system. Here, the impact of the modular organization of Cel6B on enzymatic activity is investigated. The position of the cellulose-binding module (CBM), its family and linker segment are shown to affect activity. Surprisingly, exchange of the native family-2 CBM to family-3 generates an increase in Cel6B activity on cellulosic substrates. Conversion of Cel6B to the cellulosomal mode by fusing a cohesin to the catalytic module enables formation of divalent enzyme complexes with dockerin-bearing enzymes. The resultant pseudo-cellulosomes, containing Cel6B combined with endoglucanase Cel5A, exhibits enhanced enzymatic activity, compared to mixtures of wild-type enzymes or bifunctional enzymes, unlike similar pseudo-cellulosomes containing endoglucanase Cel6A or proccessive endoglucanase Cel9A. Insight into the different enzymatic paradigms benefits ongoing development of efficient cellulolytic systems for conversion of plant-derived biomass into valuable sugars.

NOVELTY STATEMENT

The protein engineering of the modular arrangement of a key exoglucanase from a highly cellulolytic bacterium, Thermobifida fusca, served to explore and compare three major enzymatic paradigms for cellulose degradation. This approach revealed highly active chimaeric forms of the exoglucanase that act in synergy together with a potent endoglucanase in bifunctional enzymes or divalent pseudo-cellulosome-like complexes. Such engineered enzymes could be further integrated into larger enzymatic complexes, thereby providing a significant step forward towards conversion of the entire T. fusca free cellulolytic system into the cellulosomal modex and the enhanced conversion of cellulosic biomass into soluble sugars.

摘要

未加标签

纤维素的解构可以通过三种截然不同的酶学范例来实现:游离酶、多功能酶和自组装的多酶复合物(纤维小体)。为了研究它们的相对效率,本研究以需氧细菌热纤梭菌(Thermobifida fusca)简单高效的纤维素酶系统为酶学模型。在之前的研究中,除了 T. fusca 酶系统的关键外切葡聚糖酶 Cel6B 之外,该系统的大多数纤维素酶已成功转化为纤维小体模式并表现出较高的纤维素酶活性。在此,研究了 Cel6B 的模块化组织对酶活性的影响。结果表明,纤维素结合模块(CBM)的位置、家族和连接片段会影响活性。令人惊讶的是,将天然的家族 2 CBM 替换为家族 3 会增加 Cel6B 在纤维素底物上的活性。通过将一个黏合蛋白融合到催化模块上,将 Cel6B 转化为纤维小体模式,可使含有 dockerin 的酶与 Cel6B 形成二价酶复合物。与野生型酶或双功能酶的混合物相比,包含 Cel6B 与内切葡聚糖酶 Cel5A 的复合伪纤维小体表现出增强的酶活性,而类似的包含内切葡聚糖酶 Cel6A 或渐进内切葡聚糖酶 Cel9A 的伪纤维小体则没有。对不同酶学范例的深入了解有助于开发高效的纤维素酶系统,将植物来源的生物质转化为有价值的糖。

创新点

对高度纤维素降解菌热纤梭菌的关键外切葡聚糖酶的模块化排列进行蛋白质工程改造,以探索和比较纤维素降解的三种主要酶学范例。这种方法揭示了与强力内切葡聚糖酶在双功能酶或二价拟纤维小体样复合物中协同作用的高活性嵌合外切葡聚糖酶形式。这种工程酶可以进一步整合到更大的酶复合物中,从而为将整个 T. fusca 游离纤维素酶系统转化为纤维小体模式以及增强纤维素生物质转化为可溶性糖提供了重要的一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验