Department of Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.
Soft Matter. 2017 Oct 11;13(39):6988-7000. doi: 10.1039/c7sm00616k.
The Eckart co-rotating frame is used to analyze the dynamics of star polymers under shear flow, either in melt or solution and with different types of bonds. This formalism is compared with the standard approach used in many previous studies on polymer dynamics, where an apparent angular velocity ω is obtained from the relation between the tensor of inertia and angular momentum. A common mistake is to interpret ω as the molecular rotation frequency, which is only valid for rigid-body rotation. The Eckart frame, originally formulated to analyze the infrared spectra of small molecules, dissects different kinds of displacements: vibrations without angular momentum, pure rotation, and vibrational angular momentum (leading to a Coriolis cross-term). The Eckart frame co-rotates with the molecule with an angular frequency Ω obtained from the Eckart condition for minimal coupling between rotation and vibration. The standard and Eckart approaches are compared with a straight description of the star's dynamics taken from the time autocorrelation of the monomer positions moving around the molecule's center of mass. This is an underdamped oscillatory signal, which can be described by a rotation frequency ω and a decorrelation rate Γ. We consistently find that Ω coincides with ω, which determines the characteristic tank-treading rotation of the star. By contrast, the apparent angular velocity ω < Ω does not discern between pure rotation and molecular vibrations. We believe that the Eckart frame will be useful to unveil the dynamics of semiflexible molecules where rotation and deformations are entangled, including tumbling, tank-treading motions and breathing modes.
Eckart 共旋框架用于分析在剪切流下的星型聚合物的动力学,无论是在熔体中还是在溶液中,以及具有不同类型的键。这种形式主义与许多以前关于聚合物动力学研究中使用的标准方法进行了比较,在这些研究中,从惯性张量和角动量之间的关系可以得到一个表观角速度ω。一个常见的错误是将ω解释为分子旋转频率,这仅适用于刚体旋转。Eckart 框架最初是为了分析小分子的红外光谱而制定的,它剖析了不同类型的位移:没有角动量的振动、纯旋转和振动角动量(导致科里奥利交叉项)。Eckart 框架与分子一起以角速度Ω共旋,该角速度Ω是通过旋转和振动之间的最小耦合的 Eckart 条件获得的。将标准和 Eckart 方法与从单体围绕质心的位置的时间自相关得出的星型动力学的直接描述进行了比较。这是一个欠阻尼的振荡信号,可以用旋转频率ω和去相关速率Γ来描述。我们一致发现,Ω与ω一致,ω决定了星型的特征罐式旋转。相比之下,表观角速度ω<Ω无法区分纯旋转和分子振动。我们相信,Eckart 框架将有助于揭示旋转和变形纠缠在一起的半柔性分子的动力学,包括翻滚、罐式旋转运动和呼吸模式。