Department of Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.
Departamento Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid, Spain.
Soft Matter. 2017 Jul 26;13(29):4971-4987. doi: 10.1039/c7sm00364a.
This work analyses the rotation of star polymers under shear flow, in melts, and in good solvent dilute solution. The latter is modeled by single molecule Brownian hydrodynamics, while melts are modeled using non-equilibrium molecular dynamics in closed (periodic) boxes and in open boundaries. A Dissipative Particle Dynamics (DPD) thermostat introduces pairwise monomer friction in melts at will, in directions normal and tangent to the monomer-monomer vectors. Although tangential friction is seldom modeled, we show that it is essential to control hydrodynamic effects in melts. We analyze the different sources of molecular angular momentum in solution and melts and distinguish three dynamic regimes as the shear rate [small gamma, Greek, dot above] is increased. These dynamic regimes are related with the disruption of the different relaxation mechanisms of the star in equilibrium. Although strong differences are found between harmonic springs and finitely extensible bonds, above a critical shear rate the star molecule has a "breathing" mode with successive elongations and contractions in the flow direction with frequency Ω. The force balance in the flow direction unveils a relation between Ω and the orientation angle. Using literature results for the tumbling of rings and linear chains, either in melt or in solution, we show that the relation is general. A different "tank-treading" dynamics determines the rotation of monomers around the center of mass of the molecule. We show that the tank-treading frequency does not saturate but keeps increasing with [small gamma, Greek, dot above]. This is at odds with previous studies which erroneously calculated the molecular angular frequency, used as a proxy for tank-treading.
这项工作分析了在剪切流、熔体和良溶剂稀溶液中星型聚合物的旋转。后者通过单分子布朗动力学进行建模,而熔体则通过封闭(周期性)盒子中的非平衡分子动力学和开放边界进行建模。耗散粒子动力学(DPD)恒温器在熔体中任意方向引入单体摩擦,方向垂直于单体-单体向量和切线方向。虽然很少有模型对切线摩擦进行建模,但我们表明它对于控制熔体中的流体动力学效应至关重要。我们分析了溶液和熔体中分子角动量的不同来源,并根据剪切速率[希腊小写字母 gamma,上标 dot]的增加区分了三种动力学状态。这些动力学状态与星型在平衡时不同松弛机制的破坏有关。尽管谐波弹簧和有限可伸展键之间存在很大差异,但在临界剪切速率以上,星型分子具有“呼吸”模式,在流动方向上连续伸长和收缩,频率为Ω。在流动方向上的力平衡揭示了Ω和取向角之间的关系。利用文献中关于环和线性链在熔体或溶液中的翻滚结果,我们表明这种关系是普遍的。不同的“罐滚”动力学决定了单体围绕分子质心的旋转。我们表明,罐滚频率不会饱和,而是随着[希腊小写字母 gamma,上标 dot]的增加而不断增加。这与之前的研究结果不一致,之前的研究错误地计算了分子角频率,将其用作罐滚的代理。