Berberoglu Suha, Evrendilek Fatih, Ozkan Coskun, Donmez Cenk
Department of Landscape Architecture, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey.
Department of Environmental Engineering, Faculty of Engineering and Architecture, Abant Izzet Baysal University, Golkoy Campus, 14280 Bolu, Turkey.
Sensors (Basel). 2007 Oct 5;7(10):2115-2127. doi: 10.3390/S7102115.
The aim of this study was to derive land cover products with a 300-m pixelresolution of Envisat MERIS (Medium Resolution Imaging Spectrometer) to quantify netprimary productivity (NPP) of conifer forests of Taurus Mountain range along the EasternMediterranean coast of Turkey. The Carnegie-Ames-Stanford approach (CASA) was usedto predict annual and monthly regional NPP as modified by temperature, precipitation,solar radiation, soil texture, fractional tree cover, land cover type, and normalizeddifference vegetation index (NDVI). Fractional tree cover was estimated using continuoustraining data and multi-temporal metrics of 47 Envisat MERIS images of March 2003 toSeptember 2005 and was derived by aggregating tree cover estimates made from high-resolution IKONOS imagery to coarser Landsat ETM imagery. A regression tree algorithmwas used to estimate response variables of fractional tree cover based on the multi-temporal metrics. This study showed that Envisat MERIS data yield a greater spatial detailin the quantification of NPP over a topographically complex terrain at the regional scalethan those used at the global scale such as AVHRR.
本研究的目的是利用分辨率为300米的Envisat MERIS(中分辨率成像光谱仪)数据生成土地覆盖产品,以量化土耳其东地中海沿岸金牛座山脉针叶林的净初级生产力(NPP)。采用卡内基-埃姆斯-斯坦福方法(CASA),根据温度、降水、太阳辐射、土壤质地、树木覆盖比例、土地覆盖类型和归一化植被指数(NDVI)对区域年度和月度NPP进行预测。利用连续训练数据和2003年3月至2005年9月47幅Envisat MERIS图像的多时相指标估算树木覆盖比例,并通过将高分辨率IKONOS影像的树木覆盖估算结果汇总到分辨率较低的Landsat ETM影像上得出该比例。基于多时相指标,使用回归树算法估算树木覆盖比例的响应变量。研究表明,在区域尺度上,与AVHRR等全球尺度上使用的数据相比,Envisat MERIS数据在地形复杂地区量化NPP时能提供更详细的空间信息。