Suppr超能文献

重访和扩展广义线性混合效应模型的决定系数和组内相关系数。

The coefficient of determination and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded.

机构信息

Evolution and Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia

Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia.

出版信息

J R Soc Interface. 2017 Sep;14(134). doi: 10.1098/rsif.2017.0213. Epub 2017 Sep 13.

Abstract

The coefficient of determination quantifies the proportion of variance explained by a statistical model and is an important summary statistic of biological interest. However, estimating for generalized linear mixed models (GLMMs) remains challenging. We have previously introduced a version of that we called [Formula: see text] for Poisson and binomial GLMMs, but not for other distributional families. Similarly, we earlier discussed how to estimate intra-class correlation coefficients (ICCs) using Poisson and binomial GLMMs. In this paper, we generalize our methods to all other non-Gaussian distributions, in particular to negative binomial and gamma distributions that are commonly used for modelling biological data. While expanding our approach, we highlight two useful concepts for biologists, Jensen's inequality and the delta method, both of which help us in understanding the properties of GLMMs. Jensen's inequality has important implications for biologically meaningful interpretation of GLMMs, whereas the delta method allows a general derivation of variance associated with non-Gaussian distributions. We also discuss some special considerations for binomial GLMMs with binary or proportion data. We illustrate the implementation of our extension by worked examples from the field of ecology and evolution in the environment. However, our method can be used across disciplines and regardless of statistical environments.

摘要

决定系数量化了统计模型解释方差的比例,是生物学中重要的综合统计量。然而,估计广义线性混合模型(GLMMs)的决定系数仍然具有挑战性。我们之前介绍了一种我们称之为[公式:见正文]的决定系数,用于泊松和二项式 GLMMs,但不适用于其他分布族。同样,我们之前讨论了如何使用泊松和二项式 GLMMs 估计组内相关系数(ICCs)。在本文中,我们将方法推广到所有其他非高斯分布,特别是负二项式和伽马分布,这些分布通常用于生物数据建模。在扩展我们的方法时,我们强调了两个对生物学家有用的概念,詹森不等式和德尔塔法则,它们都有助于我们理解 GLMMs 的性质。詹森不等式对 GLMMs 的生物学意义解释具有重要意义,而德尔塔法则允许对非高斯分布的方差进行一般推导。我们还讨论了二项式 GLMMs 中二进制或比例数据的一些特殊考虑因素。我们通过环境中的生态学和进化领域的实际示例来说明我们扩展的实现。然而,我们的方法可以跨学科和统计环境使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9cc/5636267/bdb199074518/rsif20170213-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验