Suppr超能文献

miR408 通过植物血蓝蛋白调控粒重和光合作用。

MiR408 Regulates Grain Yield and Photosynthesis via a Phytocyanin Protein.

机构信息

Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.

Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

出版信息

Plant Physiol. 2017 Nov;175(3):1175-1185. doi: 10.1104/pp.17.01169. Epub 2017 Sep 13.

Abstract

Increasing grain yield is the most important object of crop breeding. Here, we report that the elevated expression of a conserved microRNA, OsmiR408, could positively regulate grain yield in rice () by increasing panicle branches and grain number. We further showed that OsmiR408 regulates grain yield by down-regulating its downstream target, , which is an uclacyanin (UCL) gene of the phytocyanin family. The knock down or knock out of also increases grain yield, while the overexpression of results in an opposite phenotype. Spatial and temporal expression analyses showed that was highly expressed in pistils, young panicles, developing seeds, and inflorescence meristem and was nearly complementary to that of OsmiR408. Interestingly, the OsUCL8 protein was localized to the cytoplasm, distinct from a majority of phytocyanins, which localize to the plasma membrane. Further studies revealed that the cleavage of by miR408 affects copper homeostasis in the plant cell, which, in turn, affects the abundance of plastocyanin proteins and photosynthesis in rice. To our knowledge, this is the first report of the effects of miR408- in regulating rice photosynthesis and grain yield. Our study further broadens the perspective of microRNAs and UCLs and provides important information for breeding high-yielding crops through genetic engineering.

摘要

提高粮食产量是作物育种最重要的目标。在这里,我们报告称,保守的 microRNA OsmiR408 的表达水平升高,可通过增加穗分枝和粒数,正向调控水稻的粒重。我们进一步表明,OsmiR408 通过下调其下游靶基因 来调控粒重, 是植物蓝素家族的一个 UCL 基因。 的敲除或敲低也会增加粒重,而 的过表达则会产生相反的表型。时空表达分析表明, 在雌蕊、幼穗、发育种子和花序分生组织中高度表达,与 OsmiR408 的表达几乎互补。有趣的是,OsUCL8 蛋白定位于细胞质,与大多数植物蓝素不同,后者定位于质膜。进一步的研究表明,miR408 对 的切割影响植物细胞中的铜稳态,进而影响水稻质体蓝素蛋白和光合作用的丰度。据我们所知,这是 miR408-调控水稻光合作用和粒重的第一个报道。我们的研究进一步拓宽了 microRNAs 和 UCLs 的视角,并为通过基因工程培育高产作物提供了重要信息。

相似文献

1
MiR408 Regulates Grain Yield and Photosynthesis via a Phytocyanin Protein.
Plant Physiol. 2017 Nov;175(3):1175-1185. doi: 10.1104/pp.17.01169. Epub 2017 Sep 13.
2
Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants.
J Integr Plant Biol. 2018 Apr;60(4):323-340. doi: 10.1111/jipb.12634. Epub 2018 Mar 14.
3
Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching.
Nat Biotechnol. 2013 Sep;31(9):848-52. doi: 10.1038/nbt.2646. Epub 2013 Jul 21.
5
Blocking miR396 increases rice yield by shaping inflorescence architecture.
Nat Plants. 2015 Dec 21;2:15196. doi: 10.1038/nplants.2015.196.
6
Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice.
Nat Plants. 2015 Dec 21;2:15203. doi: 10.1038/nplants.2015.203.
8
miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice.
Plant Biotechnol J. 2019 Apr;17(4):712-723. doi: 10.1111/pbi.13009. Epub 2018 Oct 8.
9
The LARGE2-APO1/APO2 regulatory module controls panicle size and grain number in rice.
Plant Cell. 2021 May 31;33(4):1212-1228. doi: 10.1093/plcell/koab041.
10
OsGASR9 positively regulates grain size and yield in rice (Oryza sativa).
Plant Sci. 2019 Sep;286:17-27. doi: 10.1016/j.plantsci.2019.03.008. Epub 2019 Mar 26.

引用本文的文献

1
Non-coding RNA-mediated regulation of seed endosperm development.
Front Plant Sci. 2025 Aug 8;16:1640284. doi: 10.3389/fpls.2025.1640284. eCollection 2025.
3
Genetic Improvement of rice Grain size Using the CRISPR/Cas9 System.
Rice (N Y). 2025 Jan 27;18(1):3. doi: 10.1186/s12284-025-00758-8.
4
Biggest of tinies: natural variation in seed size and mineral distribution in the ancient crop tef [ (Zucc.) Trotter].
Front Plant Sci. 2024 Dec 12;15:1485819. doi: 10.3389/fpls.2024.1485819. eCollection 2024.
5
Genome-Wide Dissection of Selection on microRNA Target Genes Involved in Rice Flower Development.
Plants (Basel). 2024 Nov 22;13(23):3281. doi: 10.3390/plants13233281.
6
Noncoding RNAs and their roles in regulating the agronomic traits of crops.
Fundam Res. 2023 Mar 17;3(5):718-726. doi: 10.1016/j.fmre.2023.02.020. eCollection 2023 Sep.
7
Longitudinal genome-wide association study reveals early QTL that predict biomass accumulation under cold stress in sorghum.
Front Plant Sci. 2024 May 14;15:1278802. doi: 10.3389/fpls.2024.1278802. eCollection 2024.
10
Evidence of microRNAs origination from chloroplast genome and their role in regulating Photosystem II protein N (psbN) mRNA.
BioTechnologia (Pozn). 2024 Mar 29;105(1):19-32. doi: 10.5114/bta.2024.135639. eCollection 2024.

本文引用的文献

1
Regulating Subcellular Metal Homeostasis: The Key to Crop Improvement.
Front Plant Sci. 2016 Aug 5;7:1192. doi: 10.3389/fpls.2016.01192. eCollection 2016.
2
The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice.
Plant Biotechnol J. 2016 Nov;14(11):2134-2146. doi: 10.1111/pbi.12569. Epub 2016 May 17.
3
The tae-miR408-Mediated Control of TaTOC1 Genes Transcription Is Required for the Regulation of Heading Time in Wheat.
Plant Physiol. 2016 Mar;170(3):1578-94. doi: 10.1104/pp.15.01216. Epub 2016 Jan 14.
4
Comparative analysis of the phytocyanin gene family in 10 plant species: a focus on Zea mays.
Front Plant Sci. 2015 Jul 13;6:515. doi: 10.3389/fpls.2015.00515. eCollection 2015.
5
A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.
Mol Plant. 2015 Aug;8(8):1274-84. doi: 10.1016/j.molp.2015.04.007. Epub 2015 Apr 24.
6
MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper.
Plant Cell. 2014 Dec;26(12):4933-53. doi: 10.1105/tpc.114.127340. Epub 2014 Dec 16.
7
MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis.
Plant Biotechnol J. 2014 Oct;12(8):1132-42. doi: 10.1111/pbi.12222. Epub 2014 Jun 29.
9
Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching.
Nat Biotechnol. 2013 Sep;31(9):848-52. doi: 10.1038/nbt.2646. Epub 2013 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验