Suppr超能文献

脑连接组的多维编码。

Multidimensional encoding of brain connectomes.

机构信息

Department of Psychological and, Brain Sciences Indiana University Bloomington, IN, 47405, USA.

Instituto Argentino de Radioastronomía (IAR), CONICET CCT, La Plata Villa Elisa, 1894, Argentina.

出版信息

Sci Rep. 2017 Sep 13;7(1):11491. doi: 10.1038/s41598-017-09250-w.

Abstract

The ability to map brain networks in living individuals is fundamental in efforts to chart the relation between human behavior, health and disease. Advances in network neuroscience may benefit from developing new frameworks for mapping brain connectomes. We present a framework to encode structural brain connectomes and diffusion-weighted magnetic resonance (dMRI) data using multidimensional arrays. The framework integrates the relation between connectome nodes, edges, white matter fascicles and diffusion data. We demonstrate the utility of the framework for in vivo white matter mapping and anatomical computing by evaluating 1,490 connectomes, thirteen tractography methods, and three data sets. The framework dramatically reduces storage requirements for connectome evaluation methods, with up to 40x compression factors. Evaluation of multiple, diverse datasets demonstrates the importance of spatial resolution in dMRI. We measured large increases in connectome resolution as function of data spatial resolution (up to 52%). Moreover, we demonstrate that the framework allows performing anatomical manipulations on white matter tracts for statistical inference and to study the white matter geometrical organization. Finally, we provide open-source software implementing the method and data to reproduce the results.

摘要

在努力描绘人类行为、健康和疾病之间的关系时,能够对活体大脑网络进行映射是至关重要的。网络神经科学的进步可能得益于开发用于绘制大脑连接组图谱的新框架。我们提出了一种使用多维数组对结构大脑连接组和弥散磁共振(dMRI)数据进行编码的框架。该框架整合了连接组节点、边缘、白质束和扩散数据之间的关系。我们通过评估 1490 个连接组、13 种追踪方法和 3 个数据集,展示了该框架在活体白质图谱和解剖计算中的实用性。该框架极大地减少了连接组评估方法的存储需求,压缩因子高达 40 倍。对多个不同数据集的评估表明,dMRI 中的空间分辨率很重要。我们测量了连接组分辨率随数据空间分辨率增加而大幅提高(高达 52%)。此外,我们证明该框架允许对白质束进行解剖操作,以便进行统计推断和研究白质的几何组织。最后,我们提供了开源软件和数据,以重现实验结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ef/5597641/a9ddc89434c6/41598_2017_9250_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验