Suppr超能文献

评估微观结构信息连通性的可重复性和个体特异性。

Evaluating reproducibility and subject-specificity of microstructure-informed connectivity.

机构信息

Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland; Department of Neurology, University of Lübeck, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562 Lübeck, Germany.

CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

出版信息

Neuroimage. 2022 Sep;258:119356. doi: 10.1016/j.neuroimage.2022.119356. Epub 2022 Jun 2.

Abstract

Tractography enables identifying and evaluating the healthy and diseased brain's white matter pathways from diffusion-weighted magnetic resonance imaging data. As previous evaluation studies have reported significant false-positive estimation biases, recent microstructure-informed tractography algorithms have been introduced to improve the trade-off between specificity and sensitivity. However, a major limitation for characterizing the performance of these techniques is the lack of ground truth brain data. In this study, we compared the performance of two relevant microstructure-informed tractography methods, SIFT2 and COMMIT, by assessing the subject specificity and reproducibility of their derived white matter pathways. Specifically, twenty healthy young subjects were scanned at eight different time points at two different sites. Subject specificity and reproducibility were evaluated using the whole-brain connectomes and a subset of 29 white matter bundles. Our results indicate that although the raw tractograms are more vulnerable to the presence of false-positive connections, they are highly reproducible, suggesting that the estimation bias is subject-specific. This high reproducibility was preserved when microstructure-informed tractography algorithms were used to filter the raw tractograms. Moreover, the resulting track-density images depicted a more uniform coverage of streamlines throughout the white matter, suggesting that these techniques could increase the biological meaning of the estimated fascicles. Notably, we observed an increased subject specificity by employing connectivity pre-processing techniques to reduce the underlaying noise and the data dimensionality (using principal component analysis), highlighting the importance of these tools for future studies. Finally, no strong bias from the scanner site or time between measurements was found. The largest intraindividual variance originated from the sole repetition of data measurements (inter-run).

摘要

束路径追踪技术能够根据弥散加权磁共振成像数据来识别和评估健康和病变大脑的白质通路。由于之前的评估研究报告了显著的假阳性估计偏差,因此最近引入了基于微观结构的束路径追踪算法,以改善特异性和敏感性之间的权衡。然而,对这些技术的性能进行特征描述的一个主要限制是缺乏地面真相的大脑数据。在这项研究中,我们通过评估两种相关的基于微观结构的束路径追踪方法(SIFT2 和 COMMIT)的衍生白质通路的个体特异性和可重复性,比较了它们的性能。具体来说,二十名健康的年轻受试者在两个不同的地点进行了 8 次不同时间的扫描。通过全脑连接组和 29 个白质束的子集评估了个体特异性和可重复性。我们的结果表明,尽管原始束路径追踪图更容易受到假阳性连接的影响,但它们具有高度的可重复性,这表明估计偏差是个体特异性的。当使用基于微观结构的束路径追踪算法来过滤原始束路径追踪图时,保留了这种高可重复性。此外,所得的轨迹密度图像描绘了贯穿白质的流线更均匀的覆盖,这表明这些技术可以增加估计束的生物学意义。值得注意的是,我们观察到通过采用连接预处理技术(使用主成分分析)来降低潜在噪声和数据维度,从而提高了个体特异性,这突出了这些工具在未来研究中的重要性。最后,没有发现扫描仪站点或测量时间之间的强烈偏差。最大的个体内方差源自数据测量的唯一重复(重复运行)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验