Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18015, USA.
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, 18015, USA.
J Mater Sci Mater Med. 2017 Sep 13;28(10):161. doi: 10.1007/s10856-017-5976-6.
We analyzed the biological performance of spinodally and droplet-type phase-separated 45S5 Bioglass generated by quenching the melt from different equilibrium temperatures. MC3T3-E1 pre-osteoblast cells attached more efficiently to 45S5 Bioglass® with spinodal than to the one with droplet morphology, providing the first demonstration of the role of micro-/nano-scale on the bioactivity of Bioglass®. Upon exposure to biological solutions, phosphate buffered saline (PBS) and cell culture medium (α-MEM), a layer of hydroxyapatite (HA) formed on both glass morphologies. Although both Bioglass® varieties were incubated under identical conditions, and physico-chemical characteristics of the HA layers were similar, the adsorption magnitude of a model protein, bovine serum albumin (BSA, an abundant blood serum component) and its β-sheet/β-turn ratio and α-helix content were significantly higher on spinodal than droplet type Bioglass®. These results indicate that: (i) a protein layer quickly adsorbs on the surface of 45S5 Bioglass® varieties (with or without HA layer), (ii) the amount and the conformation of adsorbed proteins are guided by the glass micro-/nano-structure, and (iii) cell attachment and proliferation are influenced by the concentration and the conformation of attached proteins with a significantly better cell adhesion to spinodal type 45S5 Bioglass® substrate. Taken together, our results indicate that the biological performance of 45S5 Bioglass® can be improved further with a relatively simple, inexpensive fabrication procedure that provides a superior glass micro-/nano-structure. A simple modification to the fabrication procedure of classic 45S5 Bioglass® generates spinodal (A(a)) and droplet (A(b)) varieties and has a significant impact on protein adsorption (B) and cell adhesion (C).
我们分析了由熔体淬火产生的具有旋节分解和液滴型相分离的 45S5 生物玻璃的生物学性能,这些熔体来自于不同的平衡温度。MC3T3-E1 前成骨细胞更有效地附着在具有旋节分解形貌的 45S5 生物玻璃上,而不是附着在具有液滴形貌的生物玻璃上,这首次证明了微/纳米尺度对生物玻璃生物活性的作用。在暴露于生物溶液(磷酸盐缓冲盐水(PBS)和细胞培养基(α-MEM))中时,两种玻璃形貌上都形成了羟基磷灰石(HA)层。尽管两种生物玻璃都在相同的条件下孵育,并且 HA 层的物理化学特性相似,但模型蛋白(牛血清白蛋白(BSA,一种丰富的血清成分)的吸附量及其β-折叠/β-转角比和α-螺旋含量在旋节分解形貌的生物玻璃上明显更高。这些结果表明:(i)蛋白质层迅速吸附在 45S5 生物玻璃的表面(有或没有 HA 层),(ii)吸附蛋白质的量和构象由玻璃的微/纳米结构决定,(iii)细胞附着和增殖受到附着蛋白质的浓度和构象的影响,附着在旋节分解形貌的 45S5 生物玻璃上的细胞具有明显更好的黏附能力。综上所述,我们的结果表明,通过相对简单、廉价的制造工艺可以进一步提高 45S5 生物玻璃的生物学性能,该工艺提供了优异的玻璃微/纳米结构。经典 45S5 生物玻璃制造工艺的简单改进会产生旋节分解(A(a))和液滴(A(b))两种变体,对蛋白质吸附(B)和细胞黏附(C)有显著影响。