Suppr超能文献

傅里叶变换红外光谱(FT-IR)和激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)成像在脑缺血中的应用:大鼠脑薄片的联合分析有助于改善组织分类。

Fourier Transform Infrared (FT-IR) and Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) Imaging of Cerebral Ischemia: Combined Analysis of Rat Brain Thin Cuts Toward Improved Tissue Classification.

机构信息

1 Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria.

2 Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

出版信息

Appl Spectrosc. 2018 Feb;72(2):241-250. doi: 10.1177/0003702817734618. Epub 2017 Oct 25.

Abstract

Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.

摘要

显微技术广泛用于补充组织学研究。由于化学成像领域的最新发展,联合化学分析变得具有吸引力。与单一技术或并排分析相比,该技术促进了更深入的分析。在这项研究中,研究了光血栓性中风诱导后一周收获的大鼠大脑。使用傅里叶变换红外(FT-IR)显微光谱和激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)对大鼠大脑的相邻薄片进行成像。使用内部标准(薄金层)对 LA-ICP-MS 数据进行归一化。融合获得的高光谱数据立方体,并进行多元分析。使用基于偏最小二乘判别分析(PLS-DA)或随机决策森林(RDF)算法的模型识别和分类受中风影响的大脑区域以及未受影响的灰质和白质。RDF 算法在融合数据的情况下表现出最佳的分类效果,与单个数据集(FT-IR 或 LA-ICP-MS)相比,融合数据的分类效果有所提高。变量重要性分析表明,分子和元素含量都有助于提高 RDF 分类的准确性。单变量光谱分析确定了分配组织类型的生化特性。使用 RDF 算法对多传感器高光谱数据集进行分类,可以深入了解生化过程和不同大脑区域的固态化学分配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验