IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA.
Nature. 2017 Sep 13;549(7671):242-246. doi: 10.1038/nature23879.
Quantum computers can be used to address electronic-structure problems and problems in materials science and condensed matter physics that can be formulated as interacting fermionic problems, problems which stretch the limits of existing high-performance computers. Finding exact solutions to such problems numerically has a computational cost that scales exponentially with the size of the system, and Monte Carlo methods are unsuitable owing to the fermionic sign problem. These limitations of classical computational methods have made solving even few-atom electronic-structure problems interesting for implementation using medium-sized quantum computers. Yet experimental implementations have so far been restricted to molecules involving only hydrogen and helium. Here we demonstrate the experimental optimization of Hamiltonian problems with up to six qubits and more than one hundred Pauli terms, determining the ground-state energy for molecules of increasing size, up to BeH. We achieve this result by using a variational quantum eigenvalue solver (eigensolver) with efficiently prepared trial states that are tailored specifically to the interactions that are available in our quantum processor, combined with a compact encoding of fermionic Hamiltonians and a robust stochastic optimization routine. We demonstrate the flexibility of our approach by applying it to a problem of quantum magnetism, an antiferromagnetic Heisenberg model in an external magnetic field. In all cases, we find agreement between our experiments and numerical simulations using a model of the device with noise. Our results help to elucidate the requirements for scaling the method to larger systems and for bridging the gap between key problems in high-performance computing and their implementation on quantum hardware.
量子计算机可用于解决电子结构问题和材料科学与凝聚态物理中的问题,这些问题可以表述为相互作用的费米子问题,这些问题超出了现有高性能计算机的极限。通过数值方法找到这些问题的精确解的计算成本随系统规模呈指数级增长,而由于费米子符号问题,蒙特卡罗方法是不适用的。这些经典计算方法的局限性使得使用中等规模的量子计算机来实现甚至少数原子的电子结构问题变得很有趣。然而,实验实现迄今为止仅限于仅涉及氢和氦的分子。在这里,我们展示了多达六个量子比特和超过一百个泡利项的哈密顿量问题的实验优化,确定了不断增大的分子的基态能量,直到 BeH。我们通过使用具有高效制备的试探态的变分量子本征值求解器(本征值求解器)来实现这一结果,这些试探态专门针对我们量子处理器中可用的相互作用进行了定制,同时还对费米子哈密顿量进行了紧凑编码,并采用了稳健的随机优化例程。我们通过将其应用于磁场中的反铁磁海森堡模型这一量子磁体问题,展示了我们方法的灵活性。在所有情况下,我们都发现实验结果与使用具有噪声的设备模型进行的数值模拟之间存在一致性。我们的结果有助于阐明将该方法扩展到更大系统的要求,并弥合高性能计算中的关键问题与其在量子硬件上的实现之间的差距。