Suppr超能文献

探索用于金属簇分析的量子计算

Exploring Quantum Computing for Metal Cluster Analysis.

作者信息

Pollard Nia, Hines A'Laura C, Clayborne Andre Z

机构信息

Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States.

Quantum Science and Engineering Center, George Mason University, Fairfax, Virginia 22030, United States.

出版信息

J Phys Chem A. 2025 Jul 10;129(27):5923-5930. doi: 10.1021/acs.jpca.5c01404. Epub 2025 Jun 27.

Abstract

This study explores the application of quantum computing to metal cluster analysis through the development and implementation of a quantum-DFT embedding workflow. Classical computational methods, while transformative, often face limitations in achieving chemical accuracy and computational efficiency, particularly for nanoscale systems. To address these challenges, we integrate the Variational Quantum Eigensolver (VQE) with density functional theory (DFT), leveraging the capabilities of quantum computing aiming to improve the modeling of electronic structures. Aluminum and gold clusters were used as model systems to test the established workflow. The workflow successfully determined electronic properties for aluminum clusters up to Al. Although gold clusters were used as a test case to investigate the potential reduction of nitric oxide (NO), memory limitations, the lack of relativistic corrections, and the inability to handle open-shell systems presented challenges that underscore the need for advancements in quantum hardware and algorithms. This proof-of-concept study demonstrates the potential of quantum DFT embedding to advance materials discovery, including applications in catalysis and nanomaterial design, while providing insights into the current limitations of near-term quantum devices.

摘要

本研究通过开发和实施量子密度泛函理论(quantum-DFT)嵌入工作流程,探索量子计算在金属团簇分析中的应用。经典计算方法虽然具有变革性,但在实现化学精度和计算效率方面往往面临局限性,特别是对于纳米尺度的系统。为应对这些挑战,我们将变分量子本征求解器(VQE)与密度泛函理论(DFT)相结合,利用量子计算的能力来改进电子结构建模。铝和金团簇被用作模型系统来测试所建立的工作流程。该工作流程成功确定了直至Al的铝团簇的电子性质。尽管金团簇被用作研究一氧化氮(NO)潜在还原的测试案例,但内存限制、缺乏相对论修正以及无法处理开壳层系统等问题带来了挑战,突出了量子硬件和算法进步的必要性。这项概念验证研究展示了量子DFT嵌入在推进材料发现方面的潜力,包括在催化和纳米材料设计中的应用,同时深入了解了近期量子设备当前的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e52e/12257506/256cbacc25de/jp5c01404_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验