Suppr超能文献

混合量子-经典-量子卷积神经网络

Hybrid quantum-classical-quantum convolutional neural networks.

作者信息

Long Changzhou, Huang Meng, Ye Xiucai, Futamura Yasunori, Sakurai Tetsuya

机构信息

Department of Computer Science, University of Tsukuba, Tsukuba, 3058577, Japan.

School of Computer Engineering, Jiangsu Ocean University, Lianyungang, 222005, China.

出版信息

Sci Rep. 2025 Aug 28;15(1):31780. doi: 10.1038/s41598-025-13417-1.

Abstract

Deep learning has achieved significant success in pattern recognition, with convolutional neural networks (CNNs) serving as a foundational architecture for extracting spatial features from images. Quantum computing provides an alternative computational framework, a hybrid quantum-classical convolutional neural networks (QCCNNs) leverage high-dimensional Hilbert spaces and entanglement to surpass classical CNNs in image classification accuracy under comparable architectures. Despite performance improvements, QCCNNs typically use fixed quantum layers without incorporating trainable quantum parameters. This limits their ability to capture non-linear quantum representations and separates the model from the potential advantages of expressive quantum learning. In this work, we present a hybrid quantum-classical-quantum convolutional neural network (QCQ-CNN) that incorporates a quantum convolutional filter, a shallow classical CNN, and a trainable variational quantum classifier. This architecture aims to enhance the expressivity of decision boundaries in image classification tasks by introducing tunable quantum parameters into the end-to-end learning process. Through a series of small-sample experiments on MNIST, F-MNIST, and MRI tumor datasets, QCQ-CNN demonstrates competitive accuracy and convergence behavior compared to classical and hybrid baselines. We further analyze the effect of ansatz depth and find that moderate-depth quantum circuits can improve learning stability without introducing excessive complexity. Additionally, simulations incorporating depolarizing noise and finite sampling shots suggest that QCQ-CNN maintains a certain degree of robustness under realistic quantum noise conditions. While our results are currently limited to simulations with small-scale quantum circuits, the proposed approach offers a potentially promising direction for hybrid quantum learning in near-term applications.

摘要

深度学习在模式识别方面取得了显著成功,卷积神经网络(CNN)作为从图像中提取空间特征的基础架构。量子计算提供了一种替代计算框架,混合量子-经典卷积神经网络(QCCNN)利用高维希尔伯特空间和纠缠,在可比架构下的图像分类准确率方面超越经典CNN。尽管性能有所提升,但QCCNN通常使用固定的量子层,未纳入可训练的量子参数。这限制了它们捕捉非线性量子表示的能力,并使模型与表达性量子学习的潜在优势相分离。在这项工作中,我们提出了一种混合量子-经典-量子卷积神经网络(QCQ-CNN),它结合了量子卷积滤波器、浅层经典CNN和可训练的变分量子分类器。这种架构旨在通过将可调量子参数引入端到端学习过程,增强图像分类任务中决策边界的表达能力。通过在MNIST、F-MNIST和MRI肿瘤数据集上进行的一系列小样本实验,QCQ-CNN与经典和混合基线相比,展示出具有竞争力的准确率和收敛行为。我们进一步分析了量子电路深度的影响,发现适度深度的量子电路可以提高学习稳定性,而不会引入过多复杂性。此外,结合去极化噪声和有限采样次数的模拟表明,QCQ-CNN在现实量子噪声条件下保持一定程度的鲁棒性。虽然我们的结果目前仅限于小规模量子电路的模拟,但所提出的方法为近期应用中的混合量子学习提供了一个潜在的有前景的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8f1/12394593/845dc3502ea9/41598_2025_13417_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验