Herrera Carmen M, Henderson Jeremy C, Crofts Alexander A, Trent M Stephen
Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA.
Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA.
Mol Microbiol. 2017 Nov;106(4):582-596. doi: 10.1111/mmi.13835. Epub 2017 Oct 6.
In the environment and during infection, the human intestinal pathogen Vibrio cholerae must overcome noxious compounds that damage the bacterial outer membrane. The El Tor and classical biotypes of O1 V. cholerae show striking differences in their resistance to membrane disrupting cationic antimicrobial peptides (CAMPs), such as polymyxins. The classical biotype is susceptible to CAMPs, but current pandemic El Tor biotype isolates gain CAMP resistance by altering the net charge of their cell surface through glycine modification of lipid A. Here we report a second lipid A modification mechanism that only functions in the V. cholerae El Tor biotype. We identify a functional EptA ortholog responsible for the transfer of the amino-residue phosphoethanolamine (pEtN) to the lipid A of V. cholerae El Tor that is not functional in the classical biotype. We previously reported that mildly acidic growth conditions (pH 5.8) downregulate expression of genes encoding the glycine modification machinery. In this report, growth at pH 5.8 increases expression of eptA with concomitant pEtN modification suggesting coordinated regulation of these LPS modification systems. Similarly, efficient pEtN lipid A substitution is seen in the absence of lipid A glycinylation. We further demonstrate EptA orthologs from non-cholerae Vibrio species are functional.
在环境中以及感染期间,人类肠道病原体霍乱弧菌必须克服会损害细菌外膜的有害化合物。O1群霍乱弧菌的埃尔托生物型和古典生物型在对膜破坏阳离子抗菌肽(CAMP)(如多粘菌素)的抗性方面表现出显著差异。古典生物型对CAMP敏感,但当前的大流行埃尔托生物型菌株通过脂质A的甘氨酸修饰改变其细胞表面的净电荷而获得对CAMP的抗性。在此,我们报告了第二种仅在霍乱弧菌埃尔托生物型中起作用的脂质A修饰机制。我们鉴定出一种功能性的EptA直系同源物,它负责将氨基残基磷酸乙醇胺(pEtN)转移至霍乱弧菌埃尔托生物型的脂质A,而在古典生物型中该机制无功能。我们之前报道过,轻度酸性生长条件(pH 5.8)会下调编码甘氨酸修饰机制的基因的表达。在本报告中,在pH 5.8条件下生长会增加eptA的表达并伴随pEtN修饰,这表明这些脂多糖修饰系统受到协同调控。同样,在没有脂质A甘氨酰化的情况下也能看到高效地pEtN脂质A替代。我们进一步证明来自非霍乱弧菌属的EptA直系同源物具有功能。