Suppr超能文献

基于使用Kinect的步态模式的自尊识别。

Self-esteem recognition based on gait pattern using Kinect.

作者信息

Sun Bingli, Zhang Zhan, Liu Xingyun, Hu Bin, Zhu Tingshao

机构信息

Institute of Psychology, Chinese Academy of Sciences, Beijing, China.

School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Gait Posture. 2017 Oct;58:428-432. doi: 10.1016/j.gaitpost.2017.09.001. Epub 2017 Sep 8.

Abstract

BACKGROUND

Self-esteem is an important aspect of individual's mental health. When subjects are not able to complete self-report questionnaire, behavioral assessment will be a good supplement. In this paper, we propose to use gait data collected by Kinect as an indicator to recognize self-esteem.

METHODS

178 graduate students without disabilities participate in our study. Firstly, all participants complete the 10-item Rosenberg Self-Esteem Scale (RSS) to acquire self-esteem score. After completing the RRS, each participant walks for two minutes naturally on a rectangular red carpet, and the gait data are recorded using Kinect sensor. After data preprocessing, we extract a few behavioral features to train predicting model by machine learning. Based on these features, we build predicting models to recognize self-esteem.

RESULTS

For self-esteem prediction, the best correlation coefficient between predicted score and self-report score is 0.45 (p<0.001). We divide the participants according to gender, and for males, the correlation coefficient is 0.43 (p<0.001), for females, it is 0.59 (p<0.001).

CONCLUSION

Using gait data captured by Kinect sensor, we find that the gait pattern could be used to recognize self-esteem with a fairly good criterion validity. The gait predicting model can be taken as a good supplementary method to measure self-esteem.

摘要

背景

自尊是个体心理健康的重要方面。当受试者无法完成自我报告问卷时,行为评估将是一个很好的补充。在本文中,我们建议使用Kinect收集的步态数据作为识别自尊的指标。

方法

178名无残疾的研究生参与了我们的研究。首先,所有参与者完成10项罗森伯格自尊量表(RSS)以获得自尊分数。完成RRS后,每位参与者在长方形红地毯上自然行走两分钟,并用Kinect传感器记录步态数据。经过数据预处理后,我们提取一些行为特征,通过机器学习训练预测模型。基于这些特征,我们构建预测模型来识别自尊。

结果

对于自尊预测,预测分数与自我报告分数之间的最佳相关系数为0.45(p<0.001)。我们根据性别对参与者进行划分,对于男性,相关系数为0.43(p<0.001),对于女性,相关系数为0.59(p<0.001)。

结论

通过使用Kinect传感器捕获的步态数据,我们发现步态模式可用于识别自尊,具有相当好的效标效度。步态预测模型可作为测量自尊的一种很好的补充方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验