Suppr超能文献

机器学习模型可揭示步态与睡眠质量的关系。

Gait can reveal sleep quality with machine learning models.

机构信息

Institute of Psychology, Chinese Academy of Sciences, Beijing, China.

Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.

出版信息

PLoS One. 2019 Sep 25;14(9):e0223012. doi: 10.1371/journal.pone.0223012. eCollection 2019.

Abstract

Sleep quality is an important health indicator, and the current measurements of sleep rely on questionnaires, polysomnography, etc., which are intrusive, expensive or time consuming. Therefore, a more nonintrusive, inexpensive and convenient method needs to be developed. Use of the Kinect sensor to capture one's gait pattern can reveal whether his/her sleep quality meets the requirements. Fifty-nine healthy students without disabilities were recruited as participants. The Pittsburgh Sleep Quality Index (PSQI) and Kinect sensors were used to acquire the sleep quality scores and gait data. After data preprocessing, gait features were extracted for training machine learning models that predicted sleep quality scores based on the data. The t-test indicated that the following joints had stronger weightings in the prediction: the Head, Spine Shoulder, Wrist Left, Hand Right, Thumb Left, Thumb Right, Hand Tip Left, Hip Left, and Foot Left. For sleep quality prediction, the best result was achieved by Gaussian processes, with a correlation of 0.78 (p < 0.001). For the subscales, the best result was 0.51 for daytime dysfunction (p < 0.001) by linear regression. Gait can reveal sleep quality quite well. This method is a good supplement to the existing methods in identifying sleep quality more ecologically and less intrusively.

摘要

睡眠质量是一个重要的健康指标,目前的睡眠测量方法依赖于问卷、多导睡眠图等,这些方法具有侵入性、昂贵或耗时。因此,需要开发一种更非侵入性、更经济、更方便的方法。使用 Kinect 传感器来捕捉一个人的步态模式,可以揭示他/她的睡眠质量是否符合要求。

招募了 59 名没有残疾的健康学生作为参与者。使用匹兹堡睡眠质量指数(PSQI)和 Kinect 传感器来获取睡眠质量评分和步态数据。在数据预处理后,提取步态特征,用于训练机器学习模型,根据数据预测睡眠质量评分。t 检验表明,以下关节在预测中具有更强的权重:头部、脊柱、肩部、左手腕、右手、左手拇指、右手拇指、左手指尖、左髋和左脚。

对于睡眠质量预测,高斯过程的效果最好,相关性为 0.78(p < 0.001)。对于子量表,线性回归的最佳结果是日间功能障碍为 0.51(p < 0.001)。步态可以很好地反映睡眠质量。这种方法是识别睡眠质量的现有方法的一个很好的补充,它更具生态性,侵入性更小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c06/6760789/224dfe04cea3/pone.0223012.g001.jpg

相似文献

1
Gait can reveal sleep quality with machine learning models.
PLoS One. 2019 Sep 25;14(9):e0223012. doi: 10.1371/journal.pone.0223012. eCollection 2019.
2
Self-esteem recognition based on gait pattern using Kinect.
Gait Posture. 2017 Oct;58:428-432. doi: 10.1016/j.gaitpost.2017.09.001. Epub 2017 Sep 8.
3
See your mental state from your walk: Recognizing anxiety and depression through Kinect-recorded gait data.
PLoS One. 2019 May 22;14(5):e0216591. doi: 10.1371/journal.pone.0216591. eCollection 2019.
4
Ecological recognition of self-esteem leveraged by video-based gait.
Front Psychiatry. 2022 Oct 10;13:1027445. doi: 10.3389/fpsyt.2022.1027445. eCollection 2022.
6
Good and poor sleepers among OSA patients: sleep quality and overnight polysomnography findings.
Neurol Sci. 2017 Jul;38(7):1299-1306. doi: 10.1007/s10072-017-2978-6. Epub 2017 May 4.
7
Identifying stress scores from gait biometrics captured using a camera: A cross-sectional study.
Gait Posture. 2024 Mar;109:15-21. doi: 10.1016/j.gaitpost.2024.01.013. Epub 2024 Jan 15.
8
Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
Gait Posture. 2015 Jul;42(2):145-51. doi: 10.1016/j.gaitpost.2015.05.002. Epub 2015 May 14.
9
An Automated Classification of Pathological Gait Using Unobtrusive Sensing Technology.
IEEE Trans Neural Syst Rehabil Eng. 2017 Dec;25(12):2336-2346. doi: 10.1109/TNSRE.2017.2736939. Epub 2017 Aug 7.
10
Association between Self-reported Sleep Quality and Single-task Gait in Young Adults: A Study Using Machine Learning.
Sleep Sci. 2023 Nov 22;16(4):e399-e407. doi: 10.1055/s-0043-1776748. eCollection 2023 Dec.

引用本文的文献

2
Association between Self-reported Sleep Quality and Single-task Gait in Young Adults: A Study Using Machine Learning.
Sleep Sci. 2023 Nov 22;16(4):e399-e407. doi: 10.1055/s-0043-1776748. eCollection 2023 Dec.
3
Ecological recognition of self-esteem leveraged by video-based gait.
Front Psychiatry. 2022 Oct 10;13:1027445. doi: 10.3389/fpsyt.2022.1027445. eCollection 2022.
5
The Association Between Gait Speed and Sleep Problems Among Chinese Adults Aged 50 and Greater.
Front Neurosci. 2022 Apr 26;16:855955. doi: 10.3389/fnins.2022.855955. eCollection 2022.
6
A Survey of Human Gait-Based Artificial Intelligence Applications.
Front Robot AI. 2022 Jan 3;8:749274. doi: 10.3389/frobt.2021.749274. eCollection 2021.
8
Why Do They Fall? The Impact of Insomnia on Gait of Older Adults: A Case-Control Study.
Nat Sci Sleep. 2021 Mar 9;13:329-338. doi: 10.2147/NSS.S299833. eCollection 2021.

本文引用的文献

1
National Sleep Foundation's sleep time duration recommendations: methodology and results summary.
Sleep Health. 2015 Mar;1(1):40-43. doi: 10.1016/j.sleh.2014.12.010. Epub 2015 Jan 8.
3
Self-esteem recognition based on gait pattern using Kinect.
Gait Posture. 2017 Oct;58:428-432. doi: 10.1016/j.gaitpost.2017.09.001. Epub 2017 Sep 8.
5
Sleep duration and the associated cardiometabolic risk scores in adults.
Sleep Health. 2017 Jun;3(3):195-203. doi: 10.1016/j.sleh.2017.03.006. Epub 2017 Apr 23.
6
Recognizing Academic Performance, Sleep Quality, Stress Level, and Mental Health using Personality Traits, Wearable Sensors and Mobile Phones.
Int Conf Wearable Implant Body Sens Netw. 2015 Jun;2015. doi: 10.1109/BSN.2015.7299420. Epub 2015 Oct 19.
7
Sleep Quality Prediction From Wearable Data Using Deep Learning.
JMIR Mhealth Uhealth. 2016 Nov 4;4(4):e125. doi: 10.2196/mhealth.6562.
9
Emotion recognition using Kinect motion capture data of human gaits.
PeerJ. 2016 Sep 15;4:e2364. doi: 10.7717/peerj.2364. eCollection 2016.
10
Sleep quality is associated with walking under dual-task, but not single-task performance.
Gait Posture. 2016 Sep;49:127-131. doi: 10.1016/j.gaitpost.2016.06.016. Epub 2016 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验