Suppr超能文献

Histamine induced elevation of cyclic AMP phosphodiesterase activity in human monocytes.

作者信息

Holden C A, Chan S C, Norris S, Hanifin J M

机构信息

Department of Dermatology, St. Helier Hospital, Carshalton, Surrey, England.

出版信息

Agents Actions. 1987 Oct;22(1-2):36-42. doi: 10.1007/BF01968814.

Abstract

We have previously reported histamine desensitization of human blood mononuclear leukocytes resulting in reduced cAMP responses to beta-adrenergic agonists, histamine and prostaglandin E1. This heterologous desensitization occurred at low, micromolar histamine concentrations and was accompanied by elevation of cAMP-phosphodiesterase (PDE) activity in these cells. We have now investigated the activity of PDE in the lymphocyte and monocyte fractions of mononuclear leukocytes to determine the site of histamine effect. PDE activity per cell was higher in monocytes (0.075 +/- 0.070 units) than lymphocytes (0.026 +/- 0.08) units). Monocytes responded to 10(-6) M histamine stimulation with a much greater increase in PDE activity (0.354 +/- 0.1 units) than did lymphocytes (0.047 +/- 0.015 units). Histamine receptor studies, using thiazolylethylamine and chlorpheniramine as H1-agonist and antagonist respectively and dimaprit and cimetidine as H2-agonists and antagonists respectively, indicated that the histamine stimulation of PDE activity is mediated predominantly through H1 histamine receptor in the monocytes and the H1 receptor in the lymphocytes. Previously histamine had been thought to increase cyclic AMP by acting on H2 receptors to activate adenylate cyclase. Our studies show that stimulation of H1 or H2 receptors by low histamine concentration can cause the opposite effect i.e. increased catabolism and a net reduction in cAMP levels. The localization of this effect predominantly to monocytes indicates a potentially important mechanism for histamine action on immune regulation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验