LTSI-INSERM, Université de Rennes 1, UMR 1099, 35000, Rennes, France.
LIRMM-CNRS, Université de Montpellier, UMR 5506, 34000, Montpellier, France.
Int J Comput Assist Radiol Surg. 2018 Jan;13(1):13-24. doi: 10.1007/s11548-017-1666-6. Epub 2017 Sep 15.
Teleoperated robotic systems are nowadays routinely used for specific interventions. Benefits of robotic training courses have already been acknowledged by the community since manipulation of such systems requires dedicated training. However, robotic surgical simulators remain expensive and require a dedicated human-machine interface.
We present a low-cost contactless optical sensor, the Leap Motion, as a novel control device to manipulate the RAVEN-II robot. We compare peg manipulations during a training task with a contact-based device, the electro-mechanical Sigma.7. We perform two complementary analyses to quantitatively assess the performance of each control method: a metric-based comparison and a novel unsupervised spatiotemporal trajectory clustering.
We show that contactless control does not offer as good manipulability as the contact-based. Where part of the metric-based evaluation presents the mechanical control better than the contactless one, the unsupervised spatiotemporal trajectory clustering from the surgical tool motions highlights specific signature inferred by the human-machine interfaces.
Even if the current implementation of contactless control does not overtake manipulation with high-standard mechanical interface, we demonstrate that using the optical sensor complete control of the surgical instruments is feasible. The proposed method allows fine tracking of the trainee's hands in order to execute dexterous laparoscopic training gestures. This work is promising for development of future human-machine interfaces dedicated to robotic surgical training systems.
如今,远程操作机器人系统已被常规用于特定的介入治疗。由于此类系统的操作需要专门的培训,因此社区已经认可了机器人培训课程的好处。然而,机器人手术模拟器仍然昂贵,并且需要专用的人机界面。
我们提出了一种低成本的非接触式光学传感器 Leap Motion,作为一种新的控制装置来操纵 RAVEN-II 机器人。我们将使用接触式设备 Sigma.7 进行的 peg 操纵与基于接触的设备进行比较。我们采用两种互补的分析方法来定量评估每种控制方法的性能:基于度量的比较和新颖的无监督时空轨迹聚类。
我们表明,非接触式控制的可操作性不如基于接触的控制。在基于度量的评估中,部分评估结果表明机械控制优于非接触式控制,而从手术工具运动中进行的无监督时空轨迹聚类则突出了由人机界面推断出的特定特征。
即使当前的非接触式控制实现无法超越高标准的机械接口的操作,我们仍证明使用光学传感器完全可以控制手术器械。所提出的方法可以精细地跟踪学员的手部运动,以便执行灵巧的腹腔镜训练动作。这项工作为开发用于机器人手术培训系统的未来人机接口具有广阔的前景。