Suppr超能文献

近距离放射治疗中的人工智能综述

A Review of Artificial Intelligence in Brachytherapy.

作者信息

Chen Jingchu, Qiu Richard L J, Wang Tonghe, Momin Shadab, Yang Xiaofeng

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308.

School of Mechanical Engineering, Georgia Institute of Technology, GA, Atlanta, USA.

出版信息

ArXiv. 2024 Sep 25:arXiv:2409.16543v1.

Abstract

Artificial intelligence (AI) has the potential to revolutionize brachytherapy's clinical workflow. This review comprehensively examines the application of AI, focusing on machine learning and deep learning, in facilitating various aspects of brachytherapy. We analyze AI's role in making brachytherapy treatments more personalized, efficient, and effective. The applications are systematically categorized into seven categories: imaging, preplanning, treatment planning, applicator reconstruction, quality assurance, outcome prediction, and real-time monitoring. Each major category is further subdivided based on cancer type or specific tasks, with detailed summaries of models, data sizes, and results presented in corresponding tables. This review offers insights into the current advancements, challenges, and the impact of AI on treatment paradigms, encouraging further research to expand its clinical utility.

摘要

人工智能(AI)有可能彻底改变近距离放射治疗的临床工作流程。本综述全面研究了人工智能(重点是机器学习和深度学习)在促进近距离放射治疗各个方面的应用。我们分析了人工智能在使近距离放射治疗更具个性化、高效和有效的方面所发挥的作用。这些应用被系统地分为七类:成像、预规划、治疗计划、施源器重建、质量保证、结果预测和实时监测。每个主要类别根据癌症类型或特定任务进一步细分,并在相应表格中呈现模型、数据规模和结果的详细总结。本综述深入探讨了当前的进展、挑战以及人工智能对治疗模式的影响,鼓励进一步开展研究以扩大其临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe15/11469420/321bf406dc64/nihpp-2409.16543v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验