Suppr超能文献

X 射线自由电子激光辐射损伤通过光合作用系统 II 放氧复合物的 S 态循环。

X-ray Free Electron Laser Radiation Damage through the S-State Cycle of the Oxygen-Evolving Complex of Photosystem II.

机构信息

Center for Photonics and Smart Materials, Zewail City of Science and Technology , Sheikh Zayed District, 6th of October City, 12588 Giza, Egypt.

Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY , Notkestrasse 85, 22607 Hamburg, Germany.

出版信息

J Phys Chem B. 2017 Oct 12;121(40):9382-9388. doi: 10.1021/acs.jpcb.7b08371. Epub 2017 Sep 28.

Abstract

The oxygen-evolving complex (OEC) catalyzes water-splitting through a reaction mechanism that cycles the OEC through the "S-state" intermediates. Understanding structure/function relationsships of the S-states is crucial for elucidating the water-oxidation mechanism. Serial femtosecond X-ray crystallography has been used to obtain radiation damage-free structures. However, it remains to be established whether "diffraction-before-destruction" is actually accomplished or if significant changes are produced by the high-intensity X-ray pulses during the femtosecond scattering measurement. Here, we use ab initio molecular dynamics simulations to estimate the extent of structural changes induced on the femtosecond time scale. We found that the radiation damage is dependent on the bonding and charge of each atom in the OEC, in a manner that may provide lessons for XFEL studies of other metalloproteins. The maximum displacement of Mn and oxygen centers is 0.25 and 0.39 Å, respectively, during the 50 fs pulse, which is significantly smaller than the uncertainty given the 1.9 Å resolution of the current PSII crystal structures. However, these structural changes might be detectable when comparing isomorphous Fourier differences of electron density maps of the different S-states. One conclusion is that pulses shorter than 15 fs should be used to avoid significant radiation damage.

摘要

氧析出复合物(OEC)通过反应机制催化水分解,该反应机制使 OEC 通过“S 态”中间体循环。了解 S 态的结构/功能关系对于阐明水氧化机制至关重要。连续飞秒 X 射线晶体学已被用于获得无辐射损伤的结构。然而,仍有待确定“在破坏之前衍射”是否实际上完成,或者在飞秒散射测量期间高强度 X 射线脉冲是否会产生显著变化。在这里,我们使用从头算分子动力学模拟来估计在飞秒时间尺度上产生的结构变化程度。我们发现,辐射损伤取决于 OEC 中每个原子的键合和电荷,这可能为 XFEL 研究其他金属蛋白提供了一些经验。在 50 fs 脉冲期间,Mn 和氧中心的最大位移分别为 0.25 和 0.39 Å,明显小于当前 PSII 晶体结构 1.9 Å 分辨率给出的不确定性。然而,当比较不同 S 态电子密度图的同构傅里叶差异时,这些结构变化可能是可检测的。一个结论是,应使用短于 15 fs 的脉冲以避免显著的辐射损伤。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验