Beitzel Christy S, Houck Brenda D, Lewis Samantha M, Person Abigail L
Neuroscience Graduate Program, and.
Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado 80045.
J Neurosci. 2017 Oct 18;37(42):10085-10096. doi: 10.1523/JNEUROSCI.1093-17.2017. Epub 2017 Sep 15.
Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control. The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent comprised of feedback collaterals from premotor rubrospinal neurons can directly modulate IN output independent of Purkinje cell modulation. In contrast to the IN-RNm pathway, the RNm-IN feedback pathway targets multiple cell types, potentially influencing both motor output pathways and nucleo-olivary feedback.
要深入理解小脑对运动协调的作用,需要更深入地了解小脑的输出结构——小脑核如何整合其输入并影响下游运动通路。大细胞红核(RNm)是脑干的一个运动前结构,是间位核(IN)的主要靶点,并且在先前的研究中也被描述为向小脑发送反馈侧支。由于这样一条通路处于向小脑提供运动传出信息的关键位置,符合关于在小脑计算中使用伴随放电的预测,我们对两性小鼠进行了研究。使用顺行病毒示踪,我们发现与小脑皮质相比,红核脊髓神经元侧支对小脑的支配对间位核具有显著的选择性。在急性小鼠脑片中对该通路进行光遗传学激活,尽管突触电流幅度较小,但仍驱动了间位核的活动,表明其在间位核信息处理中发挥着积极作用。单突触跨突触狂犬病毒示踪表明该通路与间位核内的多种细胞类型有联系。相比之下,间位核向红核的输入靶向一个缺乏抑制性神经元的区域。对间位核向红核的输入进行光遗传学驱动显示出强烈的直接兴奋,但对红核神经元没有抑制作用。总之,这些数据表明小脑核受独立于小脑皮质的传入控制,这可能使其在运动控制中的作用多样化。所有小脑苔藓纤维均一地向小脑核和皮质发出侧支,这一普遍假设是浦肯野细胞对小脑输出的汇聚影响的经典模型的基础。具体而言,苔藓纤维被认为既直接兴奋核神经元,又通过浦肯野神经元驱动多突触前馈抑制,从而建立一个基本的计算单元。在此我们展示的数据对这一规则提出了挑战。由运动前红核脊髓神经元的反馈侧支组成的一条专门的小脑核传入通路可以独立于浦肯野细胞调节直接调节间位核的输出。与间位核 - 红核通路不同,红核 - 间位核反馈通路靶向多种细胞类型,可能影响运动输出通路和核橄榄反馈。