Suppr超能文献

浦肯野细胞简单锋电位放电中的运动信号的长期预测和反馈编码。

Long-Term Predictive and Feedback Encoding of Motor Signals in the Simple Spike Discharge of Purkinje Cells.

机构信息

Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455.

出版信息

eNeuro. 2017 Apr 11;4(2). doi: 10.1523/ENEURO.0036-17.2017. eCollection 2017 Mar-Apr.

Abstract

Most hypotheses of cerebellar function emphasize a role in real-time control of movements. However, the cerebellum's use of current information to adjust future movements and its involvement in sequencing, working memory, and attention argues for predicting and maintaining information over extended time windows. The present study examines the time course of Purkinje cell discharge modulation in the monkey () during manual, pseudo-random tracking. Analysis of the simple spike firing from 183 Purkinje cells during tracking reveals modulation up to 2 s before and after kinematics and position error. Modulation significance was assessed against trial shuffled firing, which decoupled simple spike activity from behavior and abolished long-range encoding while preserving data statistics. Position, velocity, and position errors have the most frequent and strongest long-range feedforward and feedback modulations, with less common, weaker long-term correlations for speed and radial error. Position, velocity, and position errors can be decoded from the population simple spike firing with considerable accuracy for even the longest predictive (-2000 to -1500 ms) and feedback (1500 to 2000 ms) epochs. Separate analysis of the simple spike firing in the initial hold period preceding tracking shows similar long-range feedforward encoding of the upcoming movement and in the final hold period feedback encoding of the just completed movement, respectively. Complex spike analysis reveals little long-term modulation with behavior. We conclude that Purkinje cell simple spike discharge includes short- and long-range representations of both upcoming and preceding behavior that could underlie cerebellar involvement in error correction, working memory, and sequencing.

摘要

大多数小脑功能的假说都强调了其在实时运动控制中的作用。然而,小脑利用当前信息来调整未来运动,以及它在序列、工作记忆和注意力中的参与,表明其在扩展的时间窗口中具有预测和保持信息的能力。本研究考察了猴子在手动、伪随机跟踪过程中浦肯野细胞放电调制的时间进程。对 183 个浦肯野细胞在跟踪过程中的简单尖峰放电进行分析,结果显示在运动学和位置误差之前和之后长达 2 秒的时间内都存在调制。通过对试验随机化放电的分析,评估了调制的显著性,这种方法将简单尖峰活动与行为解耦,同时消除了长程编码,而保留了数据统计特性。位置、速度和位置误差具有最频繁和最强的长程前馈和反馈调制,而速度和径向误差的长程相关性则较少见且较弱。即使在最长的预测(-2000 到-1500ms)和反馈(1500 到 2000ms)时段,也可以从群体简单尖峰放电中相当准确地解码位置、速度和位置误差。在跟踪前的初始保持期内对简单尖峰放电的单独分析表明,即将到来的运动具有类似的长程前馈编码,而在刚刚完成的运动的最后保持期内则具有反馈编码。复杂尖峰分析显示与行为的调制很少。我们得出结论,浦肯野细胞简单尖峰放电包括即将到来和之前行为的短期和长期表示,这可能是小脑参与错误校正、工作记忆和序列的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b68/5388669/eec71e42b369/enu0021722820001.jpg

相似文献

1
Long-Term Predictive and Feedback Encoding of Motor Signals in the Simple Spike Discharge of Purkinje Cells.
eNeuro. 2017 Apr 11;4(2). doi: 10.1523/ENEURO.0036-17.2017. eCollection 2017 Mar-Apr.
2
Climbing Fibers Control Purkinje Cell Representations of Behavior.
J Neurosci. 2017 Feb 22;37(8):1997-2009. doi: 10.1523/JNEUROSCI.3163-16.2017. Epub 2017 Jan 11.
3
Single trial coupling of Purkinje cell activity to speed and error signals during circular manual tracking.
Exp Brain Res. 2009 Jan;192(2):241-51. doi: 10.1007/s00221-008-1580-9. Epub 2008 Oct 7.
4
Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation.
J Neurosci. 2015 Jan 21;35(3):1106-24. doi: 10.1523/JNEUROSCI.2579-14.2015.
5
Representation of limb kinematics in Purkinje cell simple spike discharge is conserved across multiple tasks.
J Neurophysiol. 2011 Nov;106(5):2232-47. doi: 10.1152/jn.00886.2010. Epub 2011 Jul 27.
8
Climbing fibers predict movement kinematics and performance errors.
J Neurophysiol. 2017 Sep 1;118(3):1888-1902. doi: 10.1152/jn.00266.2017. Epub 2017 Jul 12.
9
Relationship of cerebellar Purkinje cell simple spike discharge to movement kinematics in the monkey.
J Neurophysiol. 1997 Jul;78(1):478-91. doi: 10.1152/jn.1997.78.1.478.
10
Predictive and feedback performance errors are signaled in the simple spike discharge of individual Purkinje cells.
J Neurosci. 2012 Oct 31;32(44):15345-58. doi: 10.1523/JNEUROSCI.2151-12.2012.

引用本文的文献

1
A cerebellar granule cell-climbing fiber computation to learn to track long time intervals.
Neuron. 2024 Aug 21;112(16):2749-2764.e7. doi: 10.1016/j.neuron.2024.05.019. Epub 2024 Jun 12.
2
Emergence of syntax and word prediction in an artificial neural circuit of the cerebellum.
Nat Commun. 2024 Jan 31;15(1):927. doi: 10.1038/s41467-024-44801-6.
3
Cerebellar contributions across behavioural timescales: a review from the perspective of cerebro-cerebellar interactions.
Front Syst Neurosci. 2023 Sep 7;17:1211530. doi: 10.3389/fnsys.2023.1211530. eCollection 2023.
4
Cerebellar associative learning underlies skilled reach adaptation.
Nat Neurosci. 2023 Jun;26(6):1068-1079. doi: 10.1038/s41593-023-01347-y. Epub 2023 May 29.
5
Cerebellar Representations of Errors and Internal Models.
Cerebellum. 2022 Oct;21(5):814-820. doi: 10.1007/s12311-022-01406-3. Epub 2022 Apr 26.
6
Sensorimotor Learning in Response to Errors in Task Performance.
eNeuro. 2022 Mar 16;9(2). doi: 10.1523/ENEURO.0371-21.2022. Print 2022 Mar-Apr.
7
Advances in the Pathogenesis of Auto-antibody-Induced Cerebellar Synaptopathies.
Cerebellum. 2023 Feb;22(1):129-147. doi: 10.1007/s12311-021-01359-z. Epub 2022 Jan 22.
9
Changes in postural strategy of the lower limb under mechanical knee constraint on an unsteady stance surface.
PLoS One. 2020 Nov 30;15(11):e0242790. doi: 10.1371/journal.pone.0242790. eCollection 2020.
10
Population coding in the cerebellum: a machine learning perspective.
J Neurophysiol. 2020 Dec 1;124(6):2022-2051. doi: 10.1152/jn.00449.2020. Epub 2020 Oct 28.

本文引用的文献

1
Climbing Fibers Control Purkinje Cell Representations of Behavior.
J Neurosci. 2017 Feb 22;37(8):1997-2009. doi: 10.1523/JNEUROSCI.3163-16.2017. Epub 2017 Jan 11.
2
Implications of Lateral Cerebellum in Proactive Control of Saccades.
J Neurosci. 2016 Jun 29;36(26):7066-74. doi: 10.1523/JNEUROSCI.0733-16.2016.
3
The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System.
J Neurosci. 2016 Apr 27;36(17):4832-45. doi: 10.1523/JNEUROSCI.0159-16.2016.
4
The Monitoring and Control of Task Sequences in Human and Non-Human Primates.
Front Syst Neurosci. 2016 Jan 21;9:185. doi: 10.3389/fnsys.2015.00185. eCollection 2015.
5
Comparing offline decoding performance in physiologically defined neuronal classes.
J Neural Eng. 2016 Apr;13(2):026004. doi: 10.1088/1741-2560/13/2/026004. Epub 2016 Jan 29.
6
Working Memory: Maintenance, Updating, and the Realization of Intentions.
Cold Spring Harb Perspect Biol. 2015 Dec 4;8(2):a021816. doi: 10.1101/cshperspect.a021816.
7
Cerebellar fMRI Activation Increases with Increasing Working Memory Demands.
Cerebellum. 2016 Jun;15(3):322-35. doi: 10.1007/s12311-015-0703-7.
8
The 3-second rule in hereditary pure cerebellar ataxia: a synchronized tapping study.
PLoS One. 2015 Feb 23;10(2):e0118592. doi: 10.1371/journal.pone.0118592. eCollection 2015.
9
Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation.
J Neurosci. 2015 Jan 21;35(3):1106-24. doi: 10.1523/JNEUROSCI.2579-14.2015.
10
Visuomotor adaptation needs a validation of prediction error by feedback error.
Front Hum Neurosci. 2014 Nov 4;8:880. doi: 10.3389/fnhum.2014.00880. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验