Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France.
Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zürich, Switzerland, and.
J Neurosci. 2014 Jul 9;34(28):9418-31. doi: 10.1523/JNEUROSCI.0401-14.2014.
The principal neurons of the cerebellar nuclei (CN), the sole output of the olivo-cerebellar system, receive a massive inhibitory input from Purkinje cells (PCs) of the cerebellar cortex. Morphological evidence suggests that CN principal cells are also contacted by inhibitory interneurons, but the properties of this connection are unknown. Using transgenic, tracing, and immunohistochemical approaches in mice, we show that CN interneurons form a large heterogeneous population with GABA/glycinergic phenotypes, distinct from GABAergic olive-projecting neurons. CN interneurons are found to contact principal output neurons, via glycine receptor (GlyR)-enriched synapses, virtually devoid of the main GABA receptor (GABAR) subunits α1 and γ2. Those clusters account for 5% of the total number of inhibitory receptor clusters on principal neurons. Brief optogenetic stimulations of CN interneurons, through selective expression of channelrhodopsin 2 after viral-mediated transfection of the flexed gene in GlyT2-Cre transgenic mice, evoked fast IPSCs in principal cells. GlyR activation accounted for 15% of interneuron IPSC amplitude, while the remaining current was mediated by activation of GABAR. Surprisingly, small GlyR clusters were also found at PC synapses onto principal CN neurons in addition to α1 and γ2 GABAR subunits. However, GlyR activation was found to account for <3% of the PC inhibitory synaptic currents evoked by electrical stimulation. This work establishes CN glycinergic neurons as a significant source of inhibition to CN principal cells, forming contacts molecularly distinct from, but functionally similar to, Purkinje cell synapses. Their impact on CN output, motor learning, and motor execution deserves further investigation.
小脑核(CN)的主要神经元是橄榄小脑系统的唯一输出,它们接收来自小脑皮层浦肯野细胞(PCs)的大量抑制性输入。形态学证据表明,CN 主要细胞也被抑制性中间神经元接触,但这种连接的性质尚不清楚。在小鼠中使用转基因、示踪和免疫组织化学方法,我们显示 CN 中间神经元形成了一个具有 GABA/glycinergic 表型的大型异质群体,与 GABA 能橄榄投射神经元不同。发现 CN 中间神经元通过富含甘氨酸受体(GlyR)的突触与主要输出神经元接触,这些突触几乎不含主要 GABA 受体(GABAR)亚基 α1 和 γ2。这些簇占主要神经元抑制性受体簇总数的 5%。通过 flexed 基因在 GlyT2-Cre 转基因小鼠中的病毒介导转染后,选择性表达通道视紫红质 2,对 CN 中间神经元进行短暂的光遗传刺激,可在主要细胞中诱发快速 IPSC。GlyR 的激活占中间神经元 IPSC 幅度的 15%,而剩余的电流由 GABAR 的激活介导。令人惊讶的是,除了α1 和 γ2 GABAR 亚基外,还在 PC 突触上的 CN 主要神经元上发现了小的 GlyR 簇。然而,发现 GlyR 的激活仅占电刺激诱发的 PC 抑制性突触电流的<3%。这项工作确立了 CN 甘氨酸能神经元作为 CN 主要细胞的重要抑制源,其形成的接触在分子上与浦肯野细胞突触不同,但功能上相似。它们对 CN 输出、运动学习和运动执行的影响值得进一步研究。